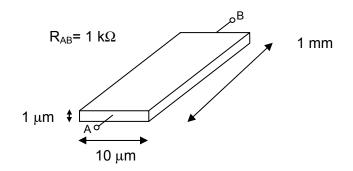
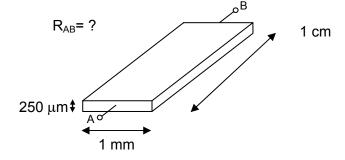
Student ID #:


ECE 113A

Homework #2 Due 10 A.M. Wednesday, October 15, 2003


Please *staple* this sheet to the front of your homework.

1a	1b	2a	2b	2c	2d	3a	3b	Total
/10	/10	/15	/15	/15	/15	/10	/10	/100

- 1) A thin metal film resistor as shown in the figure below has a resistance of 1 k Ω . It is 1 mm long, 10 μ m wide, and 1 μm thick.
 - a. Calculate the resistivity (ρ), in units of Ω -m.
 - b. Now express the resistivity in units of $\mu\Omega$ -cm, a more common unit.

- 2) For Si at 300 K, do the following: (Use cm⁻³ as your units.)
 - a. $N_D = 10^{17} \text{ cm}^{-3}$; $N_A \ll N_D$. Calculate the equilibrium electron concentration (n) and hole concentration (p). b. $N_D = 10^{15} \text{ cm}^{-3}$; $N_A \ll N_D$. Calculate the equilibrium electron concentration (n) and hole concentration (p). c. $N_A = 5x10^{17} \text{ cm}^{-3}$; $N_D \ll N_A$. Calculate the equilibrium electron concentration (n) and hole concentration (p). d. $N_A = 10^{14} \text{ cm}^{-3}$; $N_D \ll N_A$. Calculate the equilibrium electron concentration (n) and hole concentration (p).
- 3) For the silicon sample at T= 300 K shown below, given $N_D=10^{17}$ cm⁻³, $N_A << N_D$,
 - Find the resistivity ρ of the Si to within 10%. For units, use Ω -cm. a. (You may use figure 3.8 from the text.)
 - b. Calculate the resistance R_{AB} in units of Ω , for the following geometry:

