Name:

Student ID \#:

ECE 113A

Homework \#3

Due 10 A.M. Wednesday, October 29, 2003
Please staple this sheet to the front of your homework.

1 a	1 b	1 c	1 d	2 a	2 b	2 c	2 d	3 a	3 b	3 c	3 d	4 a	4 b	4 c	4 d	43	Total
$/ 5$	15	$/ 5$	$/ 10$	$/ 5$	$/ 5$	$/ 5$	$/ 10$	$/ 5$	$/ 5$	$/ 5$	$/ 10$	$/ 5$	$/ 5$	$/ 5$	$/ 5$	$/ 5$	$/ 100$

1) Answer a-d for the figure shown below:
a. Do equilibrium conditions prevail? How do you know?
b. Sketch the electrostatic potential (V) inside the semiconductor as a function of x .
c. Sketch the electric field (E) inside the semiconductor as a function of x
d. Roughly sketch n and p versus x.

2) Answer a-d for the figure shown below:
a. Do equilibrium conditions prevail? How do you know?
b. Sketch the electrostatic potential (V) inside the semiconductor as a function of x .
c. Sketch the electric field (E) inside the semiconductor as a function of x
d. Roughly sketch n and p versus x.

Name:

Student ID \#:

3) Answer a-d for the figure shown below:
a. Do equilibrium conditions prevail? How do you know?
b. Sketch the electrostatic potential (V) inside the semiconductor as a function of x .
c. Sketch the electric field (\mathscr{E}) inside the semiconductor as a function of x
d. Roughly sketch n and p versus x .

4) For Si at 300 K , calculate $\mathrm{E}_{\mathrm{C}}-\mathrm{E}_{\mathrm{F}}$ and sketch $\mathrm{E}_{\mathrm{C}}, \mathrm{E}_{\mathrm{F}}, \mathrm{E}_{\mathrm{i}}$, and E_{V} as in figure 2.18 of the book for the following cases:
a. $\quad \mathrm{N}_{\mathrm{D}}=10^{17} \mathrm{~cm}^{-3} ; \mathrm{N}_{\mathrm{A}} \ll \mathrm{N}_{\mathrm{D}}$.
b. $\quad \mathrm{N}_{\mathrm{D}}=10^{15} \mathrm{~cm}^{-3} ; \mathrm{N}_{\mathrm{A}} \ll \mathrm{N}_{\mathrm{D}}$.
c. $\mathrm{N}_{\mathrm{A}}=5 \times 10^{17} \mathrm{~cm}^{-3} ; \mathrm{N}_{\mathrm{D}} \ll \mathrm{N}_{\mathrm{A}}$.
d. $\mathrm{N}_{\mathrm{A}}=10^{14} \mathrm{~cm}^{-3} ; \mathrm{N}_{\mathrm{D}} \ll \mathrm{N}_{\mathrm{A}}$.
e. $\quad \mathrm{N}_{\mathrm{A}}=\mathrm{N}_{\mathrm{D}}=0$.
