Name:	
-------	--

Student ID #:

ECE 113A Homework #4 Due 10 A.M. Wednesday, November 5, 2003

Please staple this sheet to the front of your homework.

1a	1b	1c	2a	2b	2c	3a	3b	3c	3d	Total
/10	/10	/10	/10	/10	/10	/10	/10	/10	/10	/100

- 1) For Si at 300 K, with no light, and under steady state conditions, with $N_A = 10^{18}$ cm⁻³, and zero electric field:
 - a. Find $\Delta n_p(x)$ from 0 to infinity if $\Delta n_p(0)=10^{15}$ cm⁻³; $\Delta n_p(infinity)=0$. (Use $\tau=1 \ \mu s$).
 - b. Find n(x) under same conditions.
 - c. Find p(x) under same conditions.
- 2) For Si at 300 K, with no light, and under steady state conditions, with $N_D = 10^{15}$ cm⁻³, and zero electric field:
 - a. Find $\Delta p_n(x)$ from x=0 to x=1 μ m if $\Delta p_n(0)=10^{10}$ cm⁻³; $\Delta p_n(x=1 \ \mu m)=10^8$ cm⁻³. (Use $\tau=1 \ \mu s$).
 - b. Find p(x) under same conditions.
 - c. Find n(x) under same conditions.

For both problems, remember, you can only apply diffusion equation solutions to minority carriers. Also remember, if low-level conditions prevail as discussed on page 112 (do they?) then the majority carrier concentration is essentially unperturbed from its equilibrium value.

3) For a Si p-n diode at 300 K, with no applied voltage, with $N_A = 10^{15}$ cm⁻³, and $N_D = 10^{18}$ cm⁻³

- a. Calculate V_{bi} in units of V
- b. Calculate x_p in units of μm
- c. Calculate x_n in units of μm
- d. Calculate $W = x_n + x_p$ in units of μm