Student ID \#:

ECE 113A

Homework \#5

Due 10 A.M. Wednesday, November 19, 2003
Please staple this sheet to the front of your homework.
A voltage V_{A} of 0.4144 V is being applied to a step junction with n and p side dopings of $\mathrm{N}_{\mathrm{A}}=10^{15} \mathrm{~cm}^{-3}$ and $\mathrm{N}_{\mathrm{D}}=10^{15} \mathrm{~cm}^{-3}$, respectively. $\mathrm{n}_{\mathrm{i}}=10^{10} \mathrm{~cm}^{-3}$.

1. Calculate p on the p side at the interface. (6 pts)
2. Calculate p on the p side 10 diffusion lengths away from the interface (6 pts)
3. Calculate p on the p side 20 diffusion lengths away from the interface (6 pts)
4. Calculate p on the p side 30 diffusion lengths away from the interface (6 pts)
5. Calculate n on the p side at the interface (6 pts)
6. Calculate n on the p side 10 diffusion lengths away from the interface (6 pts)
7. Calculate n on the p side 20 diffusion lengths away from the interface (6 pts)
8. Calculate n on the p side 30 diffusion lengths away from the interface (6 pts)
9. Calculate p on the n side at the interface. (6 pts)
10. Calculate p on the n side 10 diffusion lengths away from the interface (6 pts)
11. Calculate p on the n side 20 diffusion lengths away from the interface (6 pts)
12. Calculate p on the n side 30 diffusion lengths away from the interface (6 pts)
13. Calculate n on the n side at the interface (6 pts)
14. Calculate n on the n side 10 diffusion lengths away from the interface (6 pts)
15. Calculate n on the n side 20 diffusion lengths away from the interface (6 pts)
16. Calculate n on the n side 30 diffusion lengths away from the interface (6 pts)
17. Make a dimensioned $\log (p$ or $n)$ versus x sketch of both the majority and minority carrier concentrations in the quasineutral regions of the device. (4 pts)
WRITE YOUR ANSWERS TO 1-16 IN THE TABLE BELOW: (SHOW YOUR WORK ON ATTACHED PAPER)

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	

