Sample Problem for Midterm 1

For Si at $300 K, N_{D}=6.5 \times 10^{15} \mathrm{~cm}^{-3}$ and $N_{A}=400 \mathrm{~cm}^{-3}$. Find $E_{C}-E_{F}$ in units of eV .

$$
\begin{aligned}
& N_{C}=\left(2.5 \times 10^{19} \mathrm{~cm}^{-3}\right)\left(m_{n}{ }^{*} / m_{0}{ }^{*}\right)^{3 / 2} \\
& \text { (Equation found on p.51 in textbook) } \\
& m_{n}{ }^{*} / m_{0}{ }^{*}=1.18 \text { for Si at } 300 \mathrm{~K} \\
& \Rightarrow N_{C}=3.21 \times 10^{19} \mathrm{~cm}^{-3} \\
& \begin{aligned}
n & =N_{D}=6.5 \times 10^{15} \mathrm{~cm}^{-3} \text { since } N \gg n_{o} \text { and } N_{D} \gg N_{A}
\end{aligned} \\
& \begin{aligned}
& n=N_{C} \exp \left(E_{F}-E_{C}\right) / \mathrm{k} T \\
& n / N_{C}=\exp \left(E_{F}-E_{C}\right) / \mathrm{k} T \\
& \begin{aligned}
\ln \left(n / N_{C}\right) & =\left(E_{F}-E_{C}\right) / \mathrm{k} T
\end{aligned} \\
& k T \ln \left(n / N_{C}\right)=E_{F}-E_{C} \\
& E_{C}-E_{F}=-\mathrm{kT} \ln \left(n / N_{C}\right) \\
&=-(0.0259 \mathrm{eV}) \ln \left(6.5 \times 10^{15} \mathrm{~cm}^{-3} / 3.21 \times 10^{19} \mathrm{~cm}^{-3}\right) \\
&=0.220 \mathrm{eV}
\end{aligned}
\end{aligned}
$$

Answer Check:
$E_{G}=1.12 \mathrm{eV}$ for Si at 300 K
If the system was intrinsic, $E_{C}-E_{F}=E_{G} / 2=1.12 \mathrm{eV} / 2=0.56 \mathrm{eV}$ If this is an n-type material, then E_{F} should be closer to E_{C} than E_{V}. If this is a p-type material, then E_{F} should be closer to E_{V} than E_{C}.
So, since this is an n-type material, $E_{C}-E_{F}<E_{G} / 2$
For our problem, $E_{C}-E_{F}=0.220 \mathrm{eV}$ and $E_{G} / 2=0.56 \mathrm{eV}$, so our answer makes sense.

