Sample Problem for Midterm 1

For Si at 300K, $N_D = 6.5 \times 10^{15}$ cm⁻³ and $N_A = 400$ cm⁻³. Find $E_C - E_F$ in units of eV.

$$N_{C} = (2.5x10^{19} \text{ cm}^{-3})(m_{n}^{*}/m_{0}^{*})^{3/2}$$
(Equation found on p.51 in textbook)
 $m_{n}^{*}/m_{0}^{*} = 1.18 \text{ for Si at } 300K$
 $\Rightarrow N_{C} = 3.21x10^{19} \text{ cm}^{-3}$
 $n = N_{D} = 6.5x10^{15} \text{ cm}^{-3} \text{ since } N >> n_{o} \text{ and } N_{D} >> N_{A}$
 $n = N_{C} \exp(E_{F} - E_{C})/kT$
 $n/N_{C} = \exp(E_{F} - E_{C})/kT$
 $ln(n/N_{C}) = (E_{F} - E_{C})/kT$
 $kT ln(n/N_{C}) = E_{F} - E_{C}$
 $E_{C} - E_{F} = -kT ln(n/N_{C})$
 $= -(0.0259eV)ln(6.5x10^{15} \text{ cm}^{-3}/3.21x10^{19} \text{ cm}^{-3})$
 $= 0.220eV$

Answer Check:

 $E_G = 1.12eV$ for Si at 300K If the system was intrinsic, $E_C - E_F = E_G/2 = 1.12eV/2 = 0.56eV$ If this is an n-type material, then E_F should be closer to E_C than E_V . If this is a p-type material, then E_F should be closer to E_V than E_C . So, since this is an n-type material, $E_C - E_F < E_G/2$ For our problem, $E_C - E_F = 0.220eV$ and $E_G/2 = 0.56eV$, so our answer makes sense.