ECE 113A

Professor Burke (15400) Section A

Homework \#1 Solutions and Grading Criteria

1) If the lattice constant or unit cell length in Si is $\mathrm{a}=5.43 \times 10^{-8} \mathrm{~cm}$:
a) Find the number of atoms $/ \mathrm{cm}^{3}$ in Si (20 pts total)

3 pts Corner atoms: (8 corners)(1/8 atom per corner) $=1$ atom
3 pts Face atoms: $\quad(6$ faces)($1 / 2$ atom per face) $=3$ atoms
3 pts Center atoms: (4 centers)(1 atom per center) $=4$ atoms
3 pts $\quad N=1$ atom +3 atoms +4 atoms $=8$ atoms
3 pts $\quad V=a^{3}=\left(5.43 \times 10^{-8} \mathrm{~cm}\right)^{3}=1.60 \times 10^{-22} \mathrm{~cm}^{3}$
3 pts $\quad N / V=8$ atoms $/ 1.60 \times 10^{-22} \mathrm{~cm}^{3}$
2 pts $\quad=5.00 \times 10^{22}$ atoms $/ \mathrm{cm}^{3}$
b) Find the number of atoms $/ \mathrm{m}^{3}$ in Si ($\mathbf{2 0} \mathbf{~ p t s ~ t o t a l) ~}$

5 pts $\quad N=8$ atoms (from part A)
5 pts $\quad a=5.43 \times 10^{-8} \mathrm{~cm}=5.43 \times 10^{-10} \mathrm{~m}$
3 pts $\quad V=a^{3}=\left(5.43 \times 10^{-8} \mathrm{~cm}\right)^{3}=1.60 \times 10^{-28} \mathrm{~cm}^{3}$
3 pts $\quad N / V=8$ atoms $/ 1.60 \times 10^{-28} \mathrm{~cm}^{3}$
4 pts $\quad=5.00 \times 10^{28}$ atoms $/ \mathrm{m}^{3}$
5 pts $\quad 1 \mathrm{~m}=10^{2} \mathrm{~cm}$
5 pts $\quad 1 \mathrm{~m}^{3}=\left(10^{2} \mathrm{~cm}\right)^{3}=10^{6} \mathrm{~cm}^{3}$
5 pts $\quad N / V=\left(5.00 \times 10^{22}\right.$ atoms $\left./ \mathrm{cm}^{3}\right)\left(10^{6} \mathrm{~cm}^{3} / 1 \mathrm{~m}^{3}\right)$
5 pts $\quad=5.00 \times 10^{28}$ atoms $/ \mathrm{m}^{3}$
2) 10^{10} electrons pass through an opening $1 \mathrm{~cm} X 0.5 \mathrm{~cm}$ per second.
a) What is the current in A? (20 pts total)

5 pts $\quad q=n e=\left(10^{I 0}\right.$ electrons $\left(1.6 \times 10^{-19}\right.$ C/electron)
5 pts $\quad=1.6 \times 10^{-9} \mathrm{C}$
5 pts $\quad I=\Delta q / \Delta t=\left(1.6 \times 10^{-9} \mathrm{C}\right) /(1$ second $)=1.6 \times 10^{-9} \mathrm{C} / \mathrm{s}$
5 pts $\quad=1.6 \times 10^{-9} \mathrm{~A}$
b) What is the current density in $\mathrm{A} / \mathrm{cm}^{2}$? ($\mathbf{2 0} \mathbf{~ p t s}$ total)

$$
\begin{array}{lc}
\mathbf{5} \text { pts } & A(\text { area })=1 \mathrm{~cm} \times 0.5 \mathrm{~cm} \\
\mathbf{5} \text { pts } & =0.5 \mathrm{~cm}^{2} \\
\mathbf{5} \text { pts } & J=I / A=1.6 \times 10^{-9} \mathrm{~A} / 0.5 \mathrm{~cm}^{2} \\
\mathbf{5} \text { pts } & =3.2 \times 10^{-9} \mathrm{~A} / \mathrm{cm}^{2}
\end{array}
$$

3) In a modern integrated circuit, there are 10^{8} transistors. If each one occupies an area of $0.1 \mu \mathrm{~m} x 0.1 \mu \mathrm{~m}$, how big does the chip have to be in cm^{2} ? ($\mathbf{2 0} \mathbf{~ p t s}$ total)

4 pts $\quad A_{\text {transistor }}=0.1 \mu m \times 0.1 \mu m=0.01 \mu m^{2}$
4 pts $\quad A_{\text {chip }}=\#$ transistors $x A_{\text {transitor }}=\left(10^{8}\right.$ transistors $)\left(0.01 \mu m^{2} /\right.$ transistor $)=10^{6} \mu \mathrm{~m}^{2}$
2 pts $1 \mu m=10^{-4} \mathrm{~cm}$
3 pts $\quad 1 \mu m^{2}=\left(10^{-4} \mathrm{~cm}\right)^{2}=10^{-8} \mathrm{~cm}^{2}$
5 pts $\quad A_{\text {chip }}=\left(10^{6} \mu \mathrm{~m}^{2}\right)\left(10^{-8} \mathrm{~cm}^{2} / 1 \mu \mathrm{~m}^{2}\right)$
2 pts $\quad=10^{-2} \mathrm{~cm}^{2}$
or
4 pts $\quad 1 \mu m=10^{-4} \mathrm{~cm}$
4 pts $.1 \mu \mathrm{~m}=10^{-5} \mathrm{~cm}$
5 pts $\quad A_{\text {transistor }}=10^{-5} \mathrm{~cm} \times 10^{-5} \mathrm{~cm}=10^{-10} \mathrm{~cm}^{2}$
5 pts $A_{\text {chip }}=\#$ transistors $x A_{\text {transitor }}=\left(10^{8}\right.$ transistors $)\left(10^{-10} \mathrm{~cm}^{2} /\right.$ transistor $)$
2 pts $\quad=10^{-2} \mathrm{~cm}^{2}$

