ECE 113A

Professor Burke (15400) Section A

 Homework \#2 Solutions and Grading Criteria1) A thin metal resistor as shown in the figure below has a resistance of 1 kO . It is 1 mm long, $10 \mu \mathrm{~m}$ wide, and $1 \mu \mathrm{~m}$ thick.
a) Calculate the resistivity (?), in units of O-m. (10 pts total)
```
2 pts \(\quad A=W t\)
2 pts \(\quad=(10 \mu m \times 1 \mu m)\left(1 m^{2} / 10^{12} \mu m^{2}\right)=1 \times 10^{-11} \mathrm{~m}^{2}\)
2 pts ? = RA/l
\(\mathbf{2} \mathbf{p t s}=\left[(10000)\left(1 \times 10^{-11} \mathrm{~m}^{2}\right)\right] /[(1 \mathrm{~mm})(1 \mathrm{~m} / 1000 \mathrm{~mm})]\)
2 pts \(\quad=1 \times 10^{-5} O-\mathrm{m}\)
```

b) Now express the resistivity in units of $\mu \mathrm{O}-\mathrm{cm}$, a more common unit ($\mathbf{1 0} \mathbf{p t s}$ total)

```
2 pts \(\quad 1 O=10^{6} \mu O\)
2 pts \(\quad 1 \mathrm{~m}=10^{2} \mathrm{~cm}\)
4 pts \(?=\left(10^{-5} \mathrm{O}-\mathrm{m}\right)\left(10^{6} \mu \mathrm{O} / \mathrm{O}\right)\left(10^{2} \mathrm{~cm} / \mathrm{m}\right)\)
2 pts \(=1 \times 10^{3} \mu O-\mathrm{cm}\)
```

2) For Si at 300 K , do the following: (Use cm^{-3} as your units.)
a) $\mathrm{N}_{\mathrm{D}}=10^{17} \mathrm{~cm}^{-3} ; \mathrm{N}_{\mathrm{A}} \ll \mathrm{N}_{\mathrm{D}}$. Calculate the equilibrium electron concentration (n) and hole concentration (p).
(15 pts total)
Since $N_{A} \ll N_{D}$ and $\mathrm{n}_{\mathrm{i}} \ll N_{D}$:
6 pts $\quad n=N_{D}=10^{17} \mathrm{~cm}^{-3}$
6 pts $\quad p=n_{i}{ }^{2} / n$
3 pts $\quad=\left(10^{10} \mathrm{~cm}^{-3}\right)^{2} / 10^{17} \mathrm{~cm}^{-3}=10^{3} \mathrm{~cm}^{-3}$
b) $\mathrm{N}_{\mathrm{D}}=10^{15} \mathrm{~cm}^{-3} ; \mathrm{N}_{\mathrm{A}} \ll \mathrm{N}_{\mathrm{D}}$. Calculate the equilibrium electron concentration (n) and hole concentration (p).
(15 pts total)
Since $N_{A} \ll N_{D}$ and $\mathrm{n}_{\mathrm{i}} \ll N_{D}$:
6 pts $\quad n=N_{D}=10^{15} \mathrm{~cm}^{-3}$
6 pts $\quad p=n_{i}^{2} / n$
3 pts $\quad=\left(10^{10} \mathrm{~cm}^{-3}\right)^{2} / 10^{15} \mathrm{~cm}^{-3}=10^{5} \mathrm{~cm}^{-3}$
c) $\mathrm{N}_{\mathrm{A}}=5 \times 10^{17} \mathrm{~cm}^{-3} ; \mathrm{N}_{\mathrm{D}} \ll \mathrm{N}_{\mathrm{A}}$. Calculate the equilibrium electron concentration (n) and hole concentration (p). (15 pts total)

$$
\text { Since } N_{A} \ll N_{D} \text { and } \mathrm{n}_{\mathrm{i}} \ll N_{D} \text { : }
$$

6 pts $\quad p=N_{A}=5 \times 10^{17} \mathrm{~cm}^{-3}$
6 pts $\quad n=n_{i}{ }^{2} / p$
3 pts $\quad=\left(10^{10} \mathrm{~cm}^{-3}\right)^{2} / 5 \times 10^{17} \mathrm{~cm}^{-3}=2 \times 10^{2} \mathrm{~cm}^{-3}$
d) $\mathrm{N}_{\mathrm{A}}=10^{14} \mathrm{~cm}^{-3} ; \mathrm{N}_{\mathrm{D}} \ll \mathrm{N}_{\mathrm{A}}$. Calculate the equilibrium electron concentration (n) and hole concentration (p).
(15 pts total)
Since $N_{A} \ll N_{D}$ and $\mathrm{n}_{\mathrm{i}} \ll N_{D}$:
6 pts $\quad p=N_{A}=10^{14} \mathrm{~cm}^{-3}$
6 pts $n=n_{i}{ }^{2} / p$
3 pts $\quad=\left(10^{10} \mathrm{~cm}^{-3}\right)^{2} / 10^{14} \mathrm{~cm}^{-3}=10^{6} \mathrm{~cm}^{-3}$
3) For the silicon sample at $T=300 \mathrm{~K}$ shown below, given $\mathrm{N}_{\mathrm{D}}=10^{7} \mathrm{~cm}^{-3}, \mathrm{~N}_{\mathrm{A}} \ll \mathrm{N}_{\mathrm{D}}$,
a) Find the resistivity? of the Si to within 10%. For units, use $\mathrm{O}-\mathrm{cm}$. ($\mathbf{1 0} \mathbf{~ p t s ~ t o t a l) ~}$

10 pts Off the graph: ? $=7.8 \times 10^{-2} O-\mathrm{cm}$
Allowed values are (7.41-8.19×10-2 O-cm)
Full credit also received if resistivity is calculated from the equation.
b) Calculate the resistance R_{AB} in units O , for the following geometry: ($\mathbf{1 0} \mathbf{~ p t s ~ t o t a l) ~}$

	2 pts	A	$=W t$
$\mathbf{2}$ pts		$=(1 \mathrm{~mm} \times 250 \mu \mathrm{~m})(1 \mathrm{~cm} / 10 \mathrm{~mm})\left(1 \mathrm{~cm} / 10^{4} \mu \mathrm{~m}\right)=2.5 \times 10^{-3} \mathrm{~cm}^{2}$	
$\mathbf{4}$ pts	R	$=? l / A=\left(7.8 \times 10^{-2} O-\mathrm{cm}\right)(1 \mathrm{~cm}) /\left(2.5 \times 10^{-3} \mathrm{~cm}^{2}\right)$	
$\mathbf{2 p t s}$		$=31.2 O$	

Range of R excepted is: 29.6-32.8 O due to errors from graph readings.

