ECE 113A

Professor Burke (15400) Section A

Homework \#4 Solutions and Grading Criteria

1) For Si at 300 K , with no light, and under steady state conditions, with $\mathrm{N}_{\mathrm{A}}=10^{18} \mathrm{~cm}^{-3}$, and zero electric field:
a) Find $\Delta \mathrm{n}_{\mathrm{p}}(\mathrm{x})$ from 0 to infinity if $\Delta \mathrm{n}_{\mathrm{p}}(0)=10^{15} \mathrm{~cm}^{-3} ; \Delta \mathrm{n}_{\mathrm{p}}(\infty)=0$. Use $\tau=1 \mu \mathrm{~s}$. ($\mathbf{1 0} \mathbf{p t s}$ total)

2 pts $\quad D_{N} d^{2} \Delta n_{p}(x) / d x^{2}+\Delta n_{p}(x) / \tau_{n}=0$

$$
L_{N}=\left(D_{N} \tau_{n}\right)^{1 / 2}
$$

$$
=\left[(k T / q) \mu_{n} \tau_{n}\right]^{1 / 2}
$$

$$
=\left[(.0259 V)\left(270 \mathrm{~cm}^{2} / V-s\right)(1 \mu s)\right]^{1 / 2}
$$

$\mathbf{2} \mathbf{~ p t s} \quad=26.4 \mu \mathrm{~m}$ (credit given for 26-27 $\mu \mathrm{m}$)
2 pts $\quad \Delta n_{p}(x)=A \exp \left[-x / L_{N}\right]+B \exp \left[x / L_{N}\right]$
2 pts $\left\{\begin{array}{l}\Delta n_{p}(0)=A+B=10^{15} \mathrm{~cm}^{-3} \\ \Delta n_{p}(\infty)=B \exp [\infty]=0 \Rightarrow B=0 \\ A=10^{15} \mathrm{~cm}^{-3}\end{array}\right.$
2 pts $\quad \Delta n_{p}(x)=10^{15} \exp [-x / 26.4 \mu \mathrm{~m}] \mathrm{cm}^{-3}$
b) Find $\mathrm{n}(\mathrm{x})$ under same conditions. ($\mathbf{1 0} \mathbf{~ p t s ~ t o t a l) ~}$

3 pts $n_{o}=n_{i}^{2} / p_{o}=10^{2} \mathrm{~cm}^{-3}$
3 pts $n(x)=\Delta n(x)+n_{o}$
Either answer $\left\{\begin{array}{l}=10^{15} \exp [-x / 26.4 \mu \mathrm{~m}] \mathrm{cm}^{-3}+10^{2} \mathrm{~cm}^{-3} \\ \simeq 10^{15}\end{array}\right.$
4 pts $\left\{\cong 10^{15} \exp [-x / 26.4 \mu \mathrm{~m}] \mathrm{cm}^{-3}\right.$
c) Find $\mathrm{p}(\mathrm{x})$ under same conditions. ($\mathbf{1 0} \mathbf{~ p t s}$ total)

Because $\Delta n_{p} \ll p_{o}$, low level conditions prevail. Therefore, the majority carrier concentration is approximately unchanged.

$$
\begin{aligned}
\mathbf{5} \text { pts } & p(x) & =p_{o}=N_{A} \\
\mathbf{5} \mathbf{~ p t s} & & =10^{18} \mathrm{~cm}^{-3}
\end{aligned}
$$

2) For Si at 300 K , with no light, and under steady state conditions, with $\mathrm{N}_{\mathrm{D}}=10^{15} \mathrm{~cm}^{-3}$, and zero electric field:
a) Find $\Delta \mathrm{p}_{\mathrm{n}}(\mathrm{x})$ from $\mathrm{x}=0$ to $\mathrm{x}=1 \mu \mathrm{~m}$ if $\Delta \mathrm{p}_{\mathrm{n}}(0)=10^{10} \mathrm{~cm}^{-3} ; \Delta \mathrm{p}_{\mathrm{n}}(1 \mu \mathrm{~m})=10^{8} \mathrm{~cm}^{-3}$. Use $\tau=1 \mu \mathrm{~s}$. ($\mathbf{1 0}$ pts total)

2 pts $\quad D_{P} d^{2} \Delta p_{n}(x) / d x^{2}+\Delta p_{n}(x) / \tau_{p}=0$

$$
L_{P}=\left[D_{P} \tau_{p}\right]^{1 / 2}
$$

$$
=\left[(k T / q) \mu_{p} \tau_{p}\right]^{1 / 2}
$$

$$
=\left[(.0259 \mathrm{~V})\left(459 \mathrm{~cm}^{2} / V-s\right)(1 \mu \mathrm{~s})\right]^{1 / 2}
$$

$\mathbf{2} \mathbf{p t s} \quad=34.5 \mu \mathrm{~m}$ (credit given for $34-35 \mu \mathrm{~m}$)
2 pts $\quad \Delta p_{n}(x)=A \exp \left[-x / L_{P}\right]+B \exp \left[x / L_{P}\right]$
2 pts $\left\{\begin{array}{l}\Delta p_{n}(0)=A+B=10^{I 0} \mathrm{~cm}^{-3} \\ \Delta p_{n}(1 \mu \mathrm{~m})=A \exp [-1 / 34.5]+B \exp [1 / 34.5]=10^{8} \mathrm{~cm}^{-3} \\ A=1.76 \times 10^{11} \mathrm{~cm}^{-3} \& B=-1.66 \times 10^{I I} \mathrm{~cm}^{-3}\end{array}\right.$
$\mathbf{2}$ pts $\quad \begin{aligned} & \text { d }\end{aligned}$
$\Delta p_{n}(x)=\left(1.76 \times 10^{I I} \exp [-x / 34.5 \mu \mathrm{~m}]-1.66 \times 10^{I 1} \exp [x / 34.5 \mu \mathrm{~m}]\right) \mathrm{cm}^{-3}$
b) Find $\mathrm{p}(\mathrm{x})$ under same conditions. ($\mathbf{1 0} \mathbf{p t s}$ total)

3 pts $p_{o}=n_{i}{ }^{2} / n_{o}=10^{5} \mathrm{~cm}^{-3}$
3 pts $p(x)=\Delta p(x)+p_{o}$
Either answer $\left\{=\left[1.76 \times 10^{11} \exp [-x / 34.5 \mu \mathrm{~m}]-1.66 \times 10^{11} \exp [x / 34.5 \mu \mathrm{~m}]\right] \mathrm{cm}^{-3}+10^{5} \mathrm{~cm}^{-3}\right.$
4 pts
$\left\{\cong\left(1.76 \times 10^{11} \exp [-x / 34.5 \mu \mathrm{~m}]-1.66 \times 10^{11} \exp [x / 34.5 \mu \mathrm{~m}]\right) \mathrm{cm}^{-3}\right.$
c) Find $\mathrm{n}(\mathrm{x})$ under same conditions. ($\mathbf{1 0} \mathbf{~ p t s ~ t o t a l) ~}$

Because $\Delta p_{n} \ll n_{o}$, low level conditions prevail. Therefore, the majority carrier concentration is approximately unchanged.
5 pts
5 pts

$$
\begin{aligned}
n(x) & =n_{o}=N_{D} \\
& =10^{15} \mathrm{~cm}^{-3}
\end{aligned}
$$

3) For a Si p -n diode at 300 K , with no applied voltage, with $\mathrm{N}_{\mathrm{A}}=10^{15} \mathrm{~cm}^{-3}$, and $\mathrm{N}_{\mathrm{D}}=10^{18} \mathrm{~cm}^{-3}$
a) Calculate V_{bi} in units of V ($\mathbf{1 0} \mathbf{~ p t s}$ total)

4 pts $\quad V_{b i}=(k T / q) \ln \left(N_{A} N_{D} / n_{i}^{2}\right)$
3 pts $\quad=(.0259 \mathrm{~V}) \ln \left[\left(10^{15}\right)\left(10^{18}\right) /\left(10^{10}\right)^{2}\right]$
3 pts $\quad=0.775 \mathrm{~V}$ (credit given for $0.7-0.8 \mathrm{~V}$)
b) Calculate x_{p} in units of $\mu \mathrm{m}$ ($\mathbf{1 0} \mathbf{p t s}$ total)

4 pts $\quad x_{p}=\left[\left(2 K_{s} \varepsilon_{0} / q\right) V_{b i} N_{D} / N_{A}\left(N_{A}+N_{D}\right)\right]^{1 / 2}$
3 pts $\quad=\left[(2)(11.8)\left(8.85 \times 10^{-14} \mathrm{~F} / \mathrm{cm}\right)\left(10^{18} \mathrm{~cm}^{-3}\right)(0.775 \mathrm{~V}) /\left(1.6 \times 10^{-19}\right)\left(10^{15} \mathrm{~cm}^{-3}\right)\left(10^{15} \mathrm{~cm}^{-3}+10^{18} \mathrm{~cm}^{-3}\right)\right]^{1 / 2}$
$3 \mathbf{p t s} \quad=1.005 \mu \mathrm{~m}$ (credit given for 1-1.1 $\mu \mathrm{m}$)
c) Calculate x_{n} in units of $\mu \mathrm{m}$ ($\mathbf{1 0} \mathbf{~ p t s}$ total)

4 pts $\quad x_{n}=N_{A} x_{p} / N_{D}$
3 pts $\quad=\left(10^{15}\right)(1.005 \mu \mathrm{~m}) / 10^{18}$
3 pts $\quad=1.005 \times 10^{-3} \mu \mathrm{~m}$ (credit given for $1-1.1 \times 10^{-3} \mu \mathrm{~m}$)
d) Calculate $\mathrm{W}=\mathrm{x}_{\mathrm{n}}+\mathrm{x}_{\mathrm{p}}$ in units of $\mu \mathrm{m}$ ($\mathbf{1 0}$ pts total)

5 pts $\quad W=1.005 \mu \mathrm{~m}+1.005 \times 10^{-3} \mu \mathrm{~m}$
$\mathbf{5} \mathbf{~ p t s} \quad=1.006 \mu \mathrm{~m}$ (credit given for 1-1.1 $\mu \mathrm{m}$)

