ECE 113A

Professor Burke (15400) Section A

 Homework \#5 Solutions and Grading CriteriaA voltage V_{A} of 0.4144 V is being applied to a step junction with n and p side dopings of $\mathrm{N}_{\mathrm{A}}=$ $10^{15} \mathrm{~cm}^{-3}$ and $\mathrm{N}_{\mathrm{D}}=10^{15} \mathrm{~cm}^{-3}$, respectively. $\mathrm{n}_{\mathrm{i}}=10^{10} \mathrm{~cm}^{-3}$.

Under equilibrium conditions:

$$
\begin{aligned}
& p_{p, o}=N_{A}=10^{15} \mathrm{~cm}^{-3} \\
& n_{p, o}=n_{i}^{2} / N_{A}=10^{5} \mathrm{~cm}^{-3} \\
& n_{n, o}=N_{D}=10^{15} \mathrm{~cm}^{-3} \\
& p_{n, o}=n_{i}^{2} / N_{D}=10^{5} \mathrm{~cm}^{-3}
\end{aligned}
$$

For depletion region boundaries:

$$
\begin{aligned}
\Delta n_{p}\left(-x_{p}\right) & =\left(n_{i}^{2} / N_{A}\right)\left(\exp \left[q V_{A} / k T\right]-1\right) \\
& =\left(10^{5} \mathrm{~cm}^{-3}\right)(\exp [0.4144 \mathrm{~V} / 0.259 \mathrm{~V}]-1) \\
& =8.92 x 10^{11} \mathrm{~cm}^{-3} \\
\Delta p_{n}\left(x_{n}\right) & =\left(n_{i}^{2} / N_{D}\right)\left(\left(\exp \left[q V_{A} / k T\right]-1\right)\right. \\
& =\left(10^{5} \mathrm{~cm}^{-3}\right)(\exp [0.4144 \mathrm{~V} / 0.259 \mathrm{~V}]-1) \\
& =8.92 x 10^{11} \mathrm{~cm}^{-3} \\
n_{p}=n_{p, o} & +\Delta n_{p}\left(-x_{p}\right) \exp \left[-x^{\prime}, / L_{N}\right] \\
p_{n}=p_{n, o} & +\Delta p_{n}\left(x_{n}\right) \exp \left[-x^{\prime} / L_{P}\right]
\end{aligned}
$$

1) Calculate p on the p side at the interface. ($\mathbf{6} \mathbf{p t s}$)

Since $\Delta n_{p}\left(-x_{p}\right) \ll p_{p, o}$, low-level injection prevails. Therefore, the majority carrier concentration is approximately unchanged.

$$
p_{p}=p_{p, o}=10^{15} \mathrm{~cm}^{-3} \quad \text { (exact answer required or no credit) }
$$

2) Calculate p on the p side 10 diffusion lengths away from the interface. ($\mathbf{6} \mathbf{~ p t s}$)
$p_{p}=p_{p, o}=10^{15} \mathrm{~cm}^{-3} \quad$ (exact answer required or no credit)
3) Calculate p on the p side 20 diffusion lengths away from the interface. ($6 \mathbf{p t s}$)

$$
p_{p}=p_{p, o}=10^{15} \mathrm{~cm}^{-3} \quad \text { (exact answer required or no credit) }
$$

4) Calculate p on the p side 30 diffusion lengths away from the interface. ($6 \mathbf{p t s}$)

$$
p_{p}=p_{p, o}=10^{15} \mathrm{~cm}^{-3} \quad \text { (exact answer required or no credit) }
$$

5) Calculate n on the p side at the interface. ($6 \mathbf{p t s}$)

$$
\begin{aligned}
n_{p} & =n_{p, o}+\Delta n_{p}\left(-x_{p}\right) \exp [0] \\
& =10^{5} \mathrm{~cm}^{-3}+8.92 \times 10^{11} \mathrm{~cm}^{-3} \\
& =8.92 \times 10^{11} \mathrm{~cm}^{-3} \quad\left(8-10 \times 10^{11} \mathrm{~cm}^{-3} \text { for credit }\right)
\end{aligned}
$$

6) Calculate n on the p side 10 diffusion lengths away from the interface. ($6 \mathbf{p t s}$)

$$
\begin{aligned}
n_{p} & =n_{p, o}+\Delta n_{p}\left(-x_{p}\right) \exp [-10] \\
& =10^{5} \mathrm{~cm}^{-3}+8.92 \times 10^{11} \mathrm{~cm}^{-3} \exp [-10] \\
& =4.06 \times 10^{7} \mathrm{~cm}^{-3} \quad\left(3-5 \times 10^{7} \mathrm{~cm}^{-3} \text { for credit }\right)
\end{aligned}
$$

7) Calculate n on the p side 20 diffusion lengths away from the interface. ($6 \mathbf{p t s}$)

$$
\begin{aligned}
n_{p} & =n_{p, o}+\Delta n_{p}\left(-x_{p}\right) \exp [-20] \\
& =10^{5} \mathrm{~cm}^{-3}+8.92 \times 10^{11} \mathrm{~cm}^{-3} \exp [-20] \\
& =1.02 \times 10^{5} \mathrm{~cm}^{-3} \quad\left(0.8-1.2 \times 10^{5} \mathrm{~cm}^{-3} \text { for credit }\right)
\end{aligned}
$$

8) Calculate n on the p side 30 diffusion lengths away from the interface. ($6 \mathbf{p t s}$)

$$
n_{p}=n_{p, o}+\Delta n_{p}\left(-x_{p}\right) \exp [-30]
$$

$$
\begin{aligned}
& =10^{5} \mathrm{~cm}^{-3}+8.92 \times 10^{11} \mathrm{~cm}^{-3} \exp [-30] \\
& =10^{5} \mathrm{~cm}^{-3} \quad \text { (exact answer required or no credit) }
\end{aligned}
$$

9) Calculate p on the n side at the interface. ($6 \mathbf{p t s}$)

$$
\begin{aligned}
p_{n} & =p_{n, o}+\Delta p_{n}\left(x_{n}\right) \exp [0] \\
& =10^{5} \mathrm{~cm}^{-3}+8.92 \times 10^{11} \mathrm{~cm}^{-3} \\
& =8.92 \times 10^{11} \mathrm{~cm}^{-3} \quad\left(8-10 \times 10^{11} \mathrm{~cm}^{-3} \text { for credit }\right)
\end{aligned}
$$

10) Calculate p on the n side 10 diffusion lengths away from the interface. ($\mathbf{6} \mathbf{~ p t s}$)

$$
\begin{aligned}
p_{n} & =p_{n, o}+4 p_{n}\left(x_{n}\right) \exp [-10] \\
& =10^{5} \mathrm{~cm}^{-3}+8.92 \times 10^{11} \mathrm{~cm}^{-3} \exp [-10] \\
& =4.06 \times 10^{7} \mathrm{~cm}^{-3} \quad\left(3-5 \times 10^{7} \mathrm{~cm}^{-3} \text { for credit }\right)
\end{aligned}
$$

11) Calculate p on the n side 20 diffusion lengths away from the interface. ($6 \mathbf{p t s}$)

$$
\begin{aligned}
p_{n} & =p_{n, o}+\Delta p_{n}\left(x_{n}\right) \exp [-20] \\
& =10^{5} \mathrm{~cm}^{-3}+8.92 \times 10^{11} \mathrm{~cm}^{-3} \exp [-20] \\
& =1.02 \times 10^{5} \mathrm{~cm}^{-3} \quad\left(0.8-1.2 \times 10^{5} \mathrm{~cm}^{-3} \text { for credit }\right)
\end{aligned}
$$

12) Calculate p on the n side 30 diffusion lengths away from the interface. ($\mathbf{6} \mathbf{~ p t s}$)

$$
\begin{aligned}
p_{n} & =p_{n, o}+4 p_{n}\left(x_{n}\right) \exp [-30] \\
& =10^{5} \mathrm{~cm}^{-3}+8.92 \times 10^{11} \mathrm{~cm}^{-3} \exp [-30] \\
& =10^{5} \mathrm{~cm}^{-3} \quad \text { (exact answer required or no credit) }
\end{aligned}
$$

13) Calculate n on the n side at the interface. (6 pts)

Since $\Delta p_{n}\left(x_{n}\right) \ll n_{n, o}$, low-level injection prevails. Therefore, the majority carrier concentration is approximately unchanged.

$$
n_{n}=n_{n, o}=10^{15} \mathrm{~cm}^{-3} \quad \text { (exact answer required or no credit) }
$$

14) Calculate n on the n side 10 diffusion lengths away from the interface. ($\mathbf{6} \mathbf{~ p t s}$)
$n_{n}=n_{n, o}=10^{15} \mathrm{~cm}^{-3} \quad$ (exact answer required or no credit)
15) Calculate n on the n side 20 diffusion lengths away from the interface. ($6 \mathbf{p t s}$) $n_{n}=n_{n, o}=10^{15} \mathrm{~cm}^{-3} \quad$ (exact answer required or no credit)
16) Calculate n on the n side 30 diffusion lengths away from the interface. ($6 \mathbf{p t s}$)
$n_{n}=n_{n, o}=10^{15} \mathrm{~cm}^{-3} \quad$ (exact answer required or no credit)
17) Make a dimensioned $\log (p$ or $n)$ versus x sketch of both the majority and minority carrier concentrations in the quasineutral regions of the device ($\mathbf{4} \mathbf{~ p t s)}$
(If any answer in \#1-16 are wrong, no points for this section. No partial credit.)

