\qquad
\qquad
Sec.B: Peter Burke 4 to 6 pm

1	2		3	4	5	Total	
	$/ 5$		$/ 5$		$/ 5$		$/ 5$

DO NOT BEGIN THE EXAM UNTIL YOU ARE TOLD TO DO SO.

\qquad
\qquad
Sec.B: Peter Burke 4 to 6 pm

PROBLEM ONE: (5 points)

For a piece of Si at 300 K , there is no doping, in other words it is intrinsic.
Find the resistivity to within 10%. (Hint: find the density of electrons and mobility first, then calculate the resistivity.)
$n=p=n_{i}$ since this is an intrinsic material with no doping
$\mu_{n}=1358 \mathrm{~cm}^{2} / V-s$
$\mu_{p}=461 \mathrm{~cm}^{2} / V-s$
$\rho=1 /\left[q\left(\mu_{n} n+\mu_{p} p\right)\right]$
$=1 /\left[q\left(\mu_{n} n_{i}+\mu_{p} n_{i}\right)\right]$
$=1 /\left[q n_{i}\left(\mu_{n}+\mu_{p}\right)\right]$
$=1 /\left[\left(1.6 \times 10^{-19} \mathrm{C}\right)\left(10^{10} \mathrm{~cm}^{-3}\right)\left(1358 \mathrm{~cm}^{2} / V-\mathrm{s}+461 \mathrm{~cm}^{2} / V-\mathrm{s}\right)\right]$
$=3.43 \times 10^{11} \mu \Omega-\mathrm{cm}$
Acceptable Range: $3.1-3.7 \times 10^{11} \mu \Omega-\mathrm{cm}$
Grading Criteria:
1 point if p, n, μ_{n}, and μ_{p} correct
1 point for correct ρ equation
3 points for correct answer within range
\qquad
\qquad
$0.1 \mu \mathrm{~m}$

Consider the piece of Si above.
At $x=0$ (which is the " A " end), the electron density is $10^{14} \mathrm{~cm}^{-3}$.
At $x=10 \mu \mathrm{~m}$ (which is the " B " end), the electron density is $0 \mathrm{~cm}^{3}$.
The electron density varies linearly with x in between.
Assume the electric field is zero everywhere inside.
Approximate $\mathrm{D}_{\mathrm{N}}=35 \mathrm{~cm}^{2} / \mathrm{s}$.
Calculate the electron current density and current in the x-direction.
Make sure to get the sign correct.
If you say there is positive current, you mean current flows in the direction of the arrow in the figure.
(Hint: Is the current due to drift or diffusion?)
(Current is due to diffucsion since the electric field is equal to zero)
$J_{N}=q D_{N} d n / d x$
$=\left(1.6 \times 10^{-19} C\right)\left(35 \mathrm{~cm}^{2} / \mathrm{s}\right)\left(-10^{14} \mathrm{~cm}^{03}\right) /\left(10 \mu \mathrm{~m} \times 10^{-4} \mathrm{~cm} / \mu \mathrm{m}\right)$
$=-.56 \mathrm{~A}-\mathrm{cm}^{-2}$
Acceptable Range: 0.50-0.60 a-cm ${ }^{-2}$
$\boldsymbol{I}=\boldsymbol{J} \boldsymbol{A}$
$=\left(-.56 \mathrm{~A}-\mathrm{cm}^{-2}\right)\left(1 \mu \mathrm{~m} \times 10^{-4} \mathrm{~cm} / \mu \mathrm{m}\right)\left(0.1 \mu \mathrm{~m} \times 10^{-4} \mathrm{~cm} / \mu \mathrm{m}\right)$
$=-5.6 \times 10^{-10} A$
Acceptable Range: $0.50-0.60 \mathrm{nA}$

Grading Criteria:

1 point for correct current density equation
1 point for plugging in the numbers correctly into the current density equation, including the minus sign
1 point for correct current density within the given range
1 point for correct current equation
1 point for correct current equation within range
\qquad
\qquad
Sec.B: Peter Burke 4 to 6 pm

PROBLEM THREE: (5 points)

Consider an n-n junction with an abrupt doping profile. The doping level on the left hand side is 10^{15} cm^{-3}, and on the right hand side it $5 \times 0^{17} \mathrm{~cm}^{-3}$. Assume equilibrium conditions below.
a) Draw the energy band diagram for the junction. Make sure you calculate $E_{f}-E_{c}$ on both sides of the junction and label it on the diagram.

$$
\begin{aligned}
& E_{F}-E_{C}=k T \ln \left(n / N_{C}\right) \\
& N_{C}=2.51 \times 10^{19} \mathrm{~cm}^{-3}\left(m_{n} * / m_{o}\right)^{3 / 2}=3.22 \times 10^{19} \mathrm{~cm}^{-3} \\
& \left(E_{F}-E_{C}\right)_{\text {left }}=(0.0259 \mathrm{eV}) \ln \left(10^{15} \mathrm{~cm}^{-3} 3.3 .2 \times 10^{19} \mathrm{~cm}^{-3}\right)=-0.269 \mathrm{eV} \\
& \left(E_{F}-E_{C}\right)_{\text {right }}=(0.0259 \mathrm{eV}) \ln \left(5 \times 10^{17} \mathrm{~cm}^{-3} / 3.22 \times 10^{19} \mathrm{~cm}^{-3}\right)=-0.108 \mathrm{eV}
\end{aligned}
$$

Grading Criteria:
1 point for getting both $E_{F}-E_{C}$ correct
1 point for correct band diagram
b) Sketch the electrostatic potential (voltage) vs. position.

Grading Criteria:

1 point for getting correct diagram
\qquad
12-07-2004
ID no.: \qquad
Sec.B: Peter Burke 4 to 6 pm
c) Sketch the potential energy vs. position.

Grading Criteria:
1 point for getting correct diagram
d) Sketch the electric field vs. position.

Grading Criteria:
1 point for getting correct diagram

EECS170A Fall 2004 Final Exam
12-07-2004
Sec.B: Peter Burke 4 to 6 pm

Name: \qquad
ID no.: \qquad

PROBLEM FOUR: (5 points)

How much current is flowing in this circuit?
$V_{\text {diode }}=0.6 \mathrm{~V}$
Acceptable Range: $0.5 \mathrm{~V}-0.7 \mathrm{~V}$
$\boldsymbol{I}=\boldsymbol{V} / \boldsymbol{R}$
$=(4.2 V-2(0.6 V)) / 3000 \Omega$
$=1 \mathrm{~mA}$
Acceptable Range: 0.8-1.2mA
Grading Criteria:
1 point for correct voltage for diode within given range 4 points for correct answer within given range

EECS170A Fall 2004 Final Exam
12-07-2004
Sec.B: Peter Burke 4 to 6 pm
PROBLEM FIVE: (5 points)

Find V_{C} for this circuit.
$V_{\text {diode }}=0.6 \mathrm{~V}$
$V_{B E}=V_{B}-V_{E}=0.6 \mathrm{~V}$
$V_{E}=0 V$
$V_{B}=0.6 \mathrm{~V}$
$I_{B}=\left(1.6 \mathrm{~V}-V_{B}\right) / 100000 \Omega=(1.6 \mathrm{~V}-0.6 \mathrm{~V}) / 100000 \Omega=10 \mu \mathrm{~A}$
$I_{C}=\beta I_{B}=(100)(10 \mu A)=1 \mathrm{~mA}$
$I_{C}=\left(10 V-0.6 V-V_{C}\right) / 1000 \Omega$
$\left(10 V-0.6 V-V_{C}\right) / 1000 \Omega=1 m A$
$9.4 V-V_{C}=1 V$
$V_{C}=8.4 V$
Acceptable Range: 8.2V-8.6V
Grading Criteria:
1 point for correct $V_{\text {diode }}$ within range $0.5 \mathrm{~V}-0.7 \mathrm{~V}$
1 point for correct $V_{B E}$ value within range $0.6 \mathrm{~V}-0.7 \mathrm{~V}$
1 point for correct collector versus base current equation
2 points for correct answer within range (but only one if you calculate Vc correctly but mislabel it)

