\qquad
Sec: Peter Burke $\quad 3: 30$ to $4: 50 \mathrm{pm}$

1	2	3	4	5	Total
$/ 10$	$/ 10$	$/ 10$	$/ 10$	$/ 10$	$/ 50$

DO NOT BEGIN THE EXAM UNTIL YOU ARE TOLD TO DO SO.

PROBLEM ONE:

10 points

The sheet resistance of a semiconductor is found to be 1Ω /square using the four-point probe technique. The wafer thickness is 1 mm .

What is the resistivity in units of $\mu \Omega-\mathrm{cm}$?
$\rho=R_{\text {square }} t=1 \frac{\Omega}{\text { sq. }} x 1 \mathrm{~mm}=1 \Omega-m m=10^{-3} \Omega-m=10^{5} \mu \Omega-\mathrm{cm}$

PROBLEM TWO:

10 points

For the circuit shown above, the DVM reads a value of 9.99 V .
What is the input impedance of the DVM?

$$
\begin{aligned}
& V_{D V M}=\frac{R_{D V M}}{R_{D V M}+10 \mathrm{k} \Omega} 10 \mathrm{~V} \\
& \Rightarrow R_{D V M}=\frac{10 \mathrm{~V}}{\frac{10 \mathrm{~V}}{V_{D V M}}-1} 10 \mathrm{k} \Omega=9.99 \mathrm{M} \Omega \approx 10 \mathrm{M} \Omega
\end{aligned}
$$

EECS113LA Fall 2004 Lab Quiz
11-30-2003
Sec: Peter Burke $\quad 3: 30$ to $4: 50 \mathrm{pm}$

Name: \qquad
ID no.: \qquad

PROBLEM THREE:

10 points

You are given a 10 nF capacitor and a box of resistors of various values.
Design a high pass filter using these components such that $\left|\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {in }}\right|=0.71$ at 1 kHz . Draw your circuit labeling $\mathrm{V}_{\mathrm{in}}, \mathrm{V}_{\text {out }}$, and any component values below.

$\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{\omega R C}{\sqrt{1+(\omega R C)^{2}}}=0.71$
$\Rightarrow \omega R C=1$
since
$\frac{1}{\sqrt{1+(1)^{2}}}=\frac{1}{\sqrt{2}}=0.71$
$\Rightarrow R=\frac{1}{\omega C}=\frac{1}{2 \pi f C}=\frac{1}{2 \pi(1000 \mathrm{~Hz})\left(10 \times 10^{-9} \mathrm{~F}\right)}=16 \mathrm{k} \Omega$
\qquad
Sec: Peter Burke $\quad 3: 30$ to $4: 50 \mathrm{pm}$

PROBLEM FOUR:

10 points

For this circuit, $\mathrm{V}_{\mathrm{in}}=+10 \mathrm{~V}$.
Approximately what is $V_{\text {out }}$? Hint: The diode is reverse biased.
Answer:
Since the diode is reversed biased, it carries almost no current. Therefore, no current flows through the resistor. Therefore there is no voltage drop across the resistor. Therefore $\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{in}}$. Therefore $\mathrm{V}_{\text {out }}=+10 \mathrm{~V}$.

EECS113LA Fall 2004 Lab Quiz
11-30-2003
Sec: Peter Burke $\quad 3: 30$ to $4: 50 \mathrm{pm}$

Name: \qquad
ID no.: \qquad

PROBLEM FIVE:
10 points

A hypothetical lab report for EECS170A is turned in with a graph like that above for lab 6 .
Approximately what is the β value for this BJT?
$\beta=\frac{I_{c}}{I_{b}}=\frac{5 \mathrm{~mA}}{0.1 \mathrm{~mA}}=50$

