EECS113LA Fall 2004 Lab Quiz

Name:	Solutions

ID no.:_____

11-30-2003 Sec: Peter Burke 3:30 to 4:50 pm

1	2	3	4	5	Total
/10	/10	/10	/10	/10	/50

DO NOT BEGIN THE EXAM UNTIL YOU ARE TOLD TO DO SO.

EECS113LA Fall 2004 **Lab Quiz** 11-30-2003 Sec: Peter Burke 3:30 to 4:50 pm

Name:	Solutions	
ID no.:		

PROBLEM ONE:

10 points

The sheet resistance of a semiconductor is found to be 1 Ω /square using the four-point probe technique. The wafer thickness is 1 mm.

What is the resistivity in units of $\mu\Omega$ -cm?

$$\rho = R_{square}t = 1\frac{\Omega}{sq.}x1mm = 1\Omega - mm = 10^{-3}\Omega - m = 10^{5}\mu\Omega - cm$$

EECS113LA Fall 2	004 Lab Quiz	
11-30-2003		
Sec: Peter Burke	3:30 to 4:50 pm	

Name:	Solutions	
ID no.:		

PROBLEM TWO:

10 points

For the circuit shown above, the DVM reads a value of 9.99 V.

What is the input impedance of the DVM?

$$V_{DVM} = \frac{R_{DVM}}{R_{DVM} + 10k\Omega} 10V$$
$$\Rightarrow R_{DVM} = \frac{10V}{\frac{10V}{V_{DVM}} - 1} 10k\Omega = 9.99M\Omega \approx 10M\Omega$$

EECS113LA Fall 2004 Lab Quiz

Name: Solutions ID no.:_____

11-30-2003 Sec: Peter Burke 3:30 to 4:50 pm

PROBLEM THREE:

10 points

You are given a 10 nF capacitor and a box of resistors of various values.

Design a high pass filter using these components such that $|V_{out}/V_{in}| = 0.71$ at 1 kHz. Draw your circuit labeling V_{in}, V_{out}, and any component values below.

$$\frac{V_{out}}{V_{in}} = \frac{\omega RC}{\sqrt{1 + (\omega RC)^2}} = 0.71$$

$$\Rightarrow \omega RC = 1$$

since

$$\frac{1}{\sqrt{1 + (1)^2}} = \frac{1}{\sqrt{2}} = 0.71$$

$$\Rightarrow R = \frac{1}{\omega C} = \frac{1}{2\pi fC} = \frac{1}{2\pi (1000 Hz)(10x10^{-9} F)} = 16k\Omega$$

EECS113LA Fall	2004 Lab Quiz
----------------	---------------

Name:	Solutions	
ID no.:		

11-30-2003Sec: Peter Burke3:30 to 4:50 pm

PROBLEM FOUR:

10 points

For this circuit, $V_{in} = +10$ V.

Approximately what is V_{out}? Hint: The diode is reverse biased.

Answer:

Since the diode is reversed biased, it carries almost no current. Therefore, no current flows through the resistor. Therefore there is no voltage drop across the resistor. Therefore $V_{out}=V_{in}$. Therefore $V_{out}=+10$ V.

EECS113LA Fall 2	004 Lab Quiz
11-30-2003	
Sec: Peter Burke	3:30 to 4:50 pm

Name:	Solutions	
ID no.:		

PROBLEM FIVE:

10 points

A hypothetical lab report for EECS170A is turned in with a graph like that above for lab 6. Approximately what is the β value for this BJT?

$$\beta = \frac{I_c}{I_b} = \frac{5mA}{0.1mA} = 50$$