Name:

ID no.:

11-09-2004 Sec.B: Peter Burke 3:30 to 4:50 pm

1A	1B	2	3A	3B	3C	3D	3E	Total
/15	/15	/20	/10	/10	/10	/10	/10	/100

THREE PROBLEMS TOTAL.

DO NOT BEGIN THE EXAM UNTIL YOU ARE TOLD TO DO SO.

Name:_____

11-09-2004 Sec.B: Peter Burke 3:30 to 4:50 pm ID no.:_____

PROBLEM ONE: (30 points)

- 1) For a piece of Si at 300 K, $N_D = 10^{17} \text{ cm}^{-3}$:
 - a. Find the mobility μ_n of electrons to within 10% (15 points)

 $\mu_n = 801 \text{ cm}^2/V\text{-s}$ (from the graph in book, figure 3.5) Accepted answers: $721 - 881 \text{ cm}^2/V\text{-s}$

b. Find the diffusion constant D_N of electrons to within 10% (15 points)

$$D_N = \mu_n k T/q$$

= (801 cm²/V-s)(.0259V)
= 20.7 cm²/s

Name:_____ ID no.:

11-09-2004 Sec.B: Peter Burke 3:30 to 4:50 pm

PROBLEM TWO: (20 points)

Some basenne temperatures in the timee temperature scales.									
temperature	kelvins	degrees Celsius	degrees Fahrenheit						
symbol	K	°C	٥F						
boiling point of water	373.15	100.	212.						
melting point of ice	273.15	0.	32.						
absolute zero	0.	-273.15	-459.67						

Some baseline temperatures in the three temperature scales:

2) A p-n diode is reverse biased at -1 V and cooled to the temperature of the melting point of ice (T = 273 K). At that temperature, the current is 1 pA.

The diode is now put into a pot of boiling water, so that its temperature is 373 K. What is the current now, assuming the voltage is still -1 V?

This problem cannot be solved exactly, since N_A and N_D are not given. Therefore, and exact solution will not be required to get full credit on this problem.

Generally speaking, there are 2 ways to do this problem: Use lecture notes, or use book.

METHOD I: USE LECTURE NOTES

In class we showed the

$$I(V_A) = (\text{constant})e^{-\frac{qV_{bi}}{k_BT}} \left(e^{-\frac{qV_A}{k_BT}} - 1\right)$$

At V_A=-1 V,

$$\left(e^{-\frac{qV_A}{k_BT}}-1\right)\approx 1$$

for T=273 K and T = 373 K.

Therefore, $I(V_A = -1V) \approx -(\text{constant})e^{\frac{1}{k_BT}}$

Assuming the constant is independent of temperature (not exactly true but we didn't cover in lecture), we have:

Name:_____

Sec.B: Peter Burke 3:30 to 4:50 pm

ID no.:

$$\frac{I(V_A = -1V)\Big|_{273K}}{I(V_A = -1V)\Big|_{373K}} = \frac{-(\text{constant})e^{-\frac{qV_{bi}}{k_B 273K}}}{-(\text{constant})e^{-\frac{qV_{bi}}{k_B 373K}}} = \frac{e^{-\frac{qV_{bi}}{k_B 273K}}}{e^{-\frac{qV_{bi}}{k_B 373K}}} = e^{e^{-\frac{qV_{bi}}{k_B 273K}}} = e^{e^{-\frac{qV_{bi}}{k_B 373K}}}$$

Now, V_{bi} is not given so quantitatively this is as far as you can go. But a typical value of V_{bi} is 0.5 V. So for a typical value:

$$\frac{I(V_A = -1V)\Big|_{273K}}{I(V_A = -1V)\Big|_{373K}} = e^{e^{\frac{-q(0.5V)}{k_B 273K} \frac{q(0.5V)}{k_B 373K}}} = e^{-21.23+15} = e^{-5.75} = 0.003$$

So

$$I(V_A = -1V)\big|_{373K} = \frac{I(V_A = -1V)\big|_{273K}}{0.003} = 333pA$$

METHOD II: USE BOOK

11-09-2004

Book eq. 6.29

$$I(V_A) = I_0 \left(e^{-\frac{qV_A}{k_B T}} - 1 \right)$$
At V_A=-1 V,

$$\left(e^{-\frac{qV_A}{k_B T}} - 1 \right) \approx 1$$

for T=273 K and T = 373 K. Therefore, $I(V_A = -1V) \approx I_0$ Book eq. 6.30

$$\bigstar I_0 = qAn_i^2 \left(\frac{D_N}{L_N}\frac{1}{N_A} + \frac{D_p}{L_p}\frac{1}{N_D}\right)$$

q,A, N_A, N_D independent of temperature. Book figure 2.20: $n_i (T=273 \text{ K}) = 10^9 \text{ cm}^{-3}$ $n_i (T=373 \text{ K}) = 10^{12} \text{ cm}^{-3}$ $\frac{D_N}{L_N} = \frac{D_N}{\sqrt{D_N \tau_n}} = \frac{\sqrt{D_N}}{\sqrt{\tau_n}}$

Approximately, τ_n independent of temperature. By Einstein (book eqn. 3.25)

$$\sqrt{D_N} = \sqrt{\frac{k_B T \mu_n}{q}}$$

 μ_n depends on temperature, as per book figure 3.7: μ_n decreases with temperature in a way that depends on N_A , N_D .

EECS170A Fall 2004 2nd Midterm Exam Name: ID no.:_____ 11-09-2004

Sec.B: Peter Burke 3:30 to 4:50 pm

The most it decreases by is about a factor of 2. So $\sqrt{D_N}$ changes some with temperature,

but not by more than a factor of 10.

Similar arguments hold for $\sqrt{D_P}$

So the factor in parenthesis in equation * above changes by a small amount. However, the n_i^2 factor changes by a large amount, and this dominates. So if we neglected the factor in parentheses we have:

$$\frac{I(V_A = -1V)\Big|_{273K}}{I(V_A = -1V)\Big|_{373K}} = \frac{I_0\Big|_{273K}}{I_0\Big|_{373K}} = \frac{n_i^2\Big|_{273K}}{n_i^2\Big|_{373K}} = \frac{10^{18}}{10^{24}} = 10^{-6}$$

So

$$I(V_A = -1V)\big|_{373K} = \frac{I(V_A = -1V)\big|_{273K}}{0.001} = 10^6 \, pA = 1\mu A$$

Using either method, the conclusion is that the current at 373 K is much larger than the current at 273 K for reverse bias, by a large factor.

Name:_____

11-09-2004 Sec.B: Peter Burke 3:30 to 4:50 pm **PROBLEM THREE: (50 points)**

ID no.:_____

Came right out of book (chapter 3 problem 5.3). Solution set from author follows.

<u>5.3</u>

(a) Because $N_{A1} > N_{A2}$ and $p = n_i \exp[(E_i - E_F)/kT] \cong N_A$ far from the junction, it follows that $(E_i - E_F)_{x < 0} > (E_i - E_F)_{x > 0}$. The energy band diagram must therefore be of the form

(b) Given that the dopings are nondegenerate, the same development leading to Eq. (5.10) can be employed, except

$$n(x_{\rm n}) \cong n_{\rm i}^2/N_{\rm A2}$$
$$n(-x_{\rm p}) \cong n_{\rm i}^2/N_{\rm A1}$$

which when substituted into Eq. (5.8) yields

$$V_{\rm bi} = \frac{kT}{q} \ln \left(\frac{N_{\rm A1}}{N_{\rm A2}} \right)$$

Alternatively, one can write

$$V_{\text{bi}} = \frac{1}{q} \left[E_{\text{i}}(-\infty) - E_{\text{i}}(+\infty) \right] = \frac{1}{q} \left[(E_{\text{i}} - E_{\text{F}})_{p1-\text{side}} - (E_{\text{i}} - E_{\text{F}})_{p2-\text{side}} \right]$$
$$= \frac{1}{q} \left[kT \ln(N_{\text{A1}}/n_{\text{i}}) - kT \ln(N_{\text{A2}}/n_{\text{i}}) \right] = \frac{kT}{q} \ln(N_{\text{A1}}/N_{\text{A2}})$$

Note that, as must be the case, $V_{bi} \rightarrow 0$ if $N_{A1} = N_{A2}$.

. .