\qquad
\qquad
Sec.B: Peter Burke $\quad 3: 30$ to $4: 50 \mathrm{pm}$

1 A	1 B	2	3 A	3 B	3 C	3 D	3 E	Total
15	$/ 15$	$/ 20$	$/ 10$	$/ 10$	$/ 10$	$/ 10$	$/ 10$	$/ 100$

THREE PROBLEMS TOTAL.

DO NOT BEGIN THE EXAM UNTIL YOU ARE TOLD TO DO SO.

EECS170A Fall 2004 2nd Midterm Exam
11-09-2004
Sec.B: Peter Burke $\quad 3: 30$ to $4: 50 \mathrm{pm}$

Name:
ID no.: \qquad

PROBLEM ONE: (30 points)

1) For a piece of Si at $300 \mathrm{~K}, \mathrm{~N}_{\mathrm{D}}=10^{17} \mathrm{~cm}^{-3}$:
a. Find the mobility μ_{n} of electrons to within 10% (15 points)
$\mu_{n}=801 \mathrm{~cm}^{2} / V-s$ (from the graph in book, figure 3.5)
Accepted answers: $721-881 \mathrm{~cm}^{2} / V-s$
b. Find the diffusion constant D_{N} of electrons to within 10% (15 points)

$$
\begin{aligned}
D_{N} & =\mu_{n} k T / q \\
& =\left(801 \mathrm{~cm}^{2} / V-s\right)(.0259 V) \\
& =20.7 \mathrm{~cm}^{2} / \mathrm{s}
\end{aligned}
$$

EECS170A Fall 2004 2nd Midterm Exam
11-09-2004
Sec.B: Peter Burke $\quad 3: 30$ to $4: 50 \mathrm{pm}$

Name: \qquad
ID no.: \qquad

PROBLEM TWO: (20 points)

Some baseline temperatures in the three temperature scales:

temperature	kelvins	degrees Celsius	degrees Fahrenheit
symbol	\mathbf{K}	${ }^{\circ} \mathbf{C}$	${ }^{\circ} \mathbf{F}$
boiling point of water	373.15	100.	212.
melting point of ice	273.15	0.	32.
absolute zero	0.	-273.15	-459.67

2) A p-n diode is reverse biased at -1 V and cooled to the temperature of the melting point of ice ($\mathrm{T}=273 \mathrm{~K}$). At that temperature, the current is 1 pA .

The diode is now put into a pot of boiling water, so that its temperature is 373 K .
What is the current now, assuming the voltage is still - 1 V ?
This problem cannot be solved exactly, since N_{A} and N_{D} are not given.
Therefore, and exact solution will not be required to get full credit on this problem.
Generally speaking, there are 2 ways to do this problem:
Use lecture notes, or use book.

METHOD I: USE LECTURE NOTES

In class we showed the
$I\left(V_{A}\right)=($ constant $) e^{-\frac{q V_{b} b_{B} T}{k_{B} T}}\left(e^{-\frac{q V_{A}}{k_{B} T}}-1\right)$
At $V_{A}=\mathbf{- 1} V$,
$\left(e^{-\frac{q V_{A}}{k_{B} T}}-1\right) \approx 1$
for $T=273 \mathrm{~K}$ and $\mathrm{T}=\mathbf{3 7 3} \mathrm{K}$.
Therefore, $I\left(V_{A}=-1 V\right) \approx-($ constant $) e^{-\frac{q V_{b}}{k_{B} T}}$
Assuming the constant is independent of temperature (not exactly true but we didn't cover in lecture), we have:
\qquad
11-09-2004
ID no.: \qquad
Sec.B: Peter Burke $\quad 3: 30$ to $4: 50 \mathrm{pm}$
$\frac{\left.I\left(V_{A}=-1 V\right)\right|_{273 K}}{\left.I\left(V_{A}=-1 V\right)\right|_{373 K}}=\frac{-(\text { constant }) e^{-\frac{q V_{b i}}{k_{B} 273 K}}}{-(\text { constant }) e^{-\frac{q V_{b i}}{k_{B} 373 K}}}=\frac{e^{-\frac{q V_{b i}}{k_{B} 273 K}}}{e^{-\frac{q V_{b i}}{k_{B} 73 K}}}=e^{-\frac{q V_{i i}}{k_{B} 273 K}+\frac{q V_{V i}}{k_{B} 33 K}}$
Now, $\mathbf{V}_{\mathbf{b i}}$ is not given so quantitatively this is as far as you can go.
But a typical value of $\mathbf{V}_{\mathbf{b i}}$ is $\mathbf{0 . 5} \mathbf{V}$. So for a typical value:

So
$\left.I\left(V_{A}=-1 V\right)\right|_{373 K}=\frac{\left.I\left(V_{A}=-1 V\right)\right|_{273 K}}{0.003}=333 p A$

METHOD II: USE BOOK

Book eq. 6.29
$I\left(V_{A}\right)=I_{0}\left(e^{-\frac{q V_{A}}{k_{B} T}}-1\right)$
At $V_{A}=-1 \mathbf{V}$,
$\left(e^{-\frac{q V_{A}}{k_{B} T}}-1\right) \approx 1$
for $\mathbf{T}=273 \mathrm{~K}$ and $\mathbf{T}=\mathbf{3 7 3} \mathrm{K}$.
Therefore, $I\left(V_{A}=-1 V\right) \approx I_{0}$
Book eq. 6.30
$\boldsymbol{*}_{I_{0}}=q A n_{i}^{2}\left(\frac{D_{N}}{L_{N}} \frac{1}{N_{A}}+\frac{D_{p}}{L_{p}} \frac{1}{N_{D}}\right)$
$\mathbf{q}, \mathbf{A}, \mathbf{N}_{\mathbf{A}}, \mathbf{N}_{\mathbf{D}}$ independent of temperature.
Book figure 2.20:
$n_{i}(T=273 \mathrm{~K})=10^{9} \mathrm{~cm}^{-3}$
$n_{i}(T=373 K)=10^{12} \mathrm{~cm}^{-3}$
$\frac{D_{N}}{L_{N}}=\frac{D_{N}}{\sqrt{D_{N} \tau_{n}}}=\frac{\sqrt{D_{N}}}{\sqrt{\tau_{n}}}$
Approximately, τ_{n} independent of temperature.
By Einstein (book eqn. 3.25)
$\sqrt{D_{N}}=\sqrt{\frac{k_{B} T \mu_{n}}{q}}$
μ_{n} depends on temperature, as per book figure 3.7: μ_{n} decreases with temperature in a way that depends on $\mathbf{N}_{\mathrm{A}}, \mathbf{N}_{\mathrm{D}}$.

EECS170A Fall 2004 2nd Midterm Exam
11-09-2004
Sec.B: Peter Burke $\quad 3: 30$ to $4: 50 \mathrm{pm}$
The most it decreases by is about a factor of 2 . So $\sqrt{D_{N}}$ changes some with temperature, but not by more than a factor of 10 .
Similar arguments hold for $\sqrt{D_{P}}$
So the factor in parenthesis in equation * above changes by a small amount.
However, the $\mathbf{n}_{i}{ }^{2}$ factor changes by a large amount, and this dominates.
So if we neglected the factor in parentheses we have:
$\frac{\left.I\left(V_{A}=-1 V\right)\right|_{273 K}}{\left.I\left(V_{A}=-1 V\right)\right|_{373 K}}=\frac{\left.I_{0}\right|_{273 K}}{\left.I_{0}\right|_{373 K}}=\frac{\left.n_{i}^{2}\right|_{273 K}}{\left.n_{i}^{2}\right|_{373 K}}=\frac{10^{18}}{10^{24}}=10^{-6}$
So
$\left.I\left(V_{A}=-1 V\right)\right|_{373 K}=\frac{\left.I\left(V_{A}=-1 V\right)\right|_{273 K}}{0.001}=10^{6} p A=1 \mu A$
Using either method, the conclusion is that the current at 373 K is much larger than the current at $\mathbf{2 7 3} \mathbf{K}$ for reverse bias, by a large factor.

Came right out of book (chapter 3 problem 5.3). Solution set from author follows.

5.3

(a) Because $N_{\mathrm{A} 1}>N_{\mathrm{A} 2}$ and $p=n_{\mathrm{i}} \exp \left[\left(E_{\mathrm{i}}-E_{\mathrm{F}}\right) / k T\right] \cong N_{\mathrm{A}}$ far from the junction, it follows that $\left(E_{\mathrm{i}}-E_{\mathrm{F}}\right)_{x<0}>\left(E_{\mathrm{i}}-E_{\mathrm{F}}\right)_{\gg 0}$. The energy band diagram must therefore be of the form

(b) Given that the dopings are nondegenerate, the same development leading to Eq. (5.10) can be employed, except

$$
\begin{aligned}
& n\left(x_{n}\right) \cong n_{1}^{2} / N_{\mathrm{A} 2} \\
& n\left(-x_{\mathrm{p}}\right) \cong n_{\mathrm{i}}^{2} / N_{\mathrm{A} 1}
\end{aligned}
$$

which when substituted into Eq. (5.8) yields

$$
V_{\mathrm{bi}}=\frac{k T}{q} \ln \left(\frac{N_{\mathrm{Al}}}{N_{\mathrm{A} 2}}\right)
$$

Altematively, one can write

$$
\begin{aligned}
V_{\mathrm{bi}} & =\frac{1}{q}\left[E_{\mathrm{i}}(-\infty)-E_{\mathrm{i}(}(+\infty)\right]=\frac{1}{q}\left[\left(E_{\mathrm{F}}-E_{\mathrm{F}}\right)_{p 1 \text {-side }}-\left(E_{\mathrm{i}}-E_{\mathrm{F}}\right)_{p 2 \text {-side }}\right] \\
& =\frac{1}{q}\left[k T \ln \left(N_{\mathrm{A} 1} / n_{\mathrm{i}}\right)-k T \ln \left(N_{\mathrm{A} 2} / n_{\mathrm{i}}\right)\right]=\frac{k T}{q} \ln \left(N_{\mathrm{A} 1} / N_{\mathrm{A} 2}\right)
\end{aligned}
$$

Note that, as must be the case, $V_{\mathrm{bi}} \rightarrow 0$ if $N_{\mathrm{A} 1}=N_{\mathrm{A} 2}$.

