EECS 170A
 Section B
 HW\#1 Solutions \& Grading Criteria

1) Copper (Cu) has an FCC crystal structure. The lattice constant is 3.61 Angstroms.
a) Find the number of atoms $/ \mathrm{cm}^{3}$ in Cu . (20 pts total)

3 pts 8 corners $x 1 / 8$ atom/corner $=1$ atom
3 pts 6 faces $x 1 / 2$ atom $/$ face $=3$ atoms
3 pts total $\#$ atoms $=1$ atom +3 atoms $=4$ atoms
3 pts $a=3.61$ Angstroms $\times 10^{-8} \mathrm{~cm} / 1$ Angstrom $=3.61 \times 10^{-8} \mathrm{~cm}$
3 pts volume $=a^{3}=\left(3.61 \times 10^{-8} \mathrm{~cm}\right)^{3}=4.7045881 \times 10^{-23} \mathrm{~cm}^{3}$
3 pts $N=$ atoms $/$ volume
2 pts $=4$ atoms $/ 4.7045881 \times 10-23 \mathrm{~cm}^{3}=8.50 \times 10^{22}$ atoms $/ \mathrm{cm}^{3}$
b) Find the number of atoms $/ \mathrm{m}^{3}$ in Cu . (20 pts total)

5 pts $\quad 1 \mathrm{~m}=10^{2} \mathrm{~cm}$
5 pts $\quad 1 \mathrm{~m}^{3}=\left(10^{2} \mathrm{~cm}\right)^{3}=10^{6} \mathrm{~cm}^{3}$
5 pts $N=\left(8.50 \times 10^{22}\right.$ atoms $\left./ \mathrm{cm}^{3}\right)\left(10^{6} \mathrm{~cm}^{3} / \mathrm{m}^{3}\right)$
5 pts $\quad=8.50 \times 10^{28}$ atoms $/ \mathrm{m}^{3}$
5 pts $\quad a=3.61$ Angstroms $\times 10^{-10} \mathrm{~m} /$ Angstrom $=3.61 \times 10^{-10} \mathrm{~m}$
5 pts volume $=a^{3}=\left(3.61 \times 10^{-10} \mathrm{~m}\right)^{3}=4.7045881 \times 10^{-29} \mathrm{~m}^{3}$
5 pts $N=$ atoms $/$ volume
5 pts $=4$ atoms $/ 4.7045881 \times 10-29 \mathrm{~m}^{3}=8.50 \times 1028$ atoms $/ \mathrm{cm}^{3}$
2) A current of 10-6 A flows through a wire of diameter 1 mm .
a) How many electrons per second flow past a plane perpendicular to the wire?
(20 pts total)
5 pts $\quad I=n q / t$
5 pts $n / t=I / q$
5 pts $\quad=\left(10^{-6} \mathrm{C} / \mathrm{sec}\right) /\left(1.6 \times 10^{-19} \mathrm{C}\right.$ electron $)$
5 pts $\quad=6.25 \times 10^{12}$ electrons $/ \mathrm{sec}$
b) What is the current density in the wire? (20 pts total)

10 pts $J=I / A$
5 pts $=(10-6 \mathrm{~A}) /\left(3.14159 \times .25 \mathrm{~mm}^{2}\right)$
5 pts $\quad=1.27 \times 10-6 \mathrm{~A} / \mathrm{mm}^{2}=1.27 \mathrm{~A} / \mathrm{m}^{2}$
(Note: Students do not have to convert answer to SI units to get credit.)
3) In a modern integrated circuit, such as a Pentium, there are 10^{8} transistors. If the total power dissipated by the Pentium is 100 W , how much power is dissipated by each transistor, assuming the power is divided equally?

10 pts Power/transistor $=$ total power/\# transistors
5 pts $\quad=100 \mathrm{~W} / 10^{8}$ transistors
5 pts $\quad=10-6 \mathrm{~W} /$ transistor
***NOTE: Students will be marked off for wrong units. Student will receive no credit if there are no units. ***

