EECS 170A Professor Burke Section B Homework #2 Solutions and Grading Criteria

- 1) A thin metal resistor as shown in the figure below has a resistance of $1M\Omega$. It is 1mm long, 10 μ m wide, and 1 μ m thick. a) Calculate the resistivity (ρ), in units of Ω -m. (10 pts total)
 - 2 pts A = Wt $= (10\mu m x 1\mu m)(1m^2/10^{12} \mu m^2) = 1x10^{-11}m^2$ 2 pts $\rho = RA/l$ 2 pts $= [(10^{6} \Omega)(1x10^{-11}m^{2})]/[(1mm)(1m/1000mm)]$ 2 pts $= 1 \times 10^{-2} \Omega - m$ 2 pts
 - b) Now express the resistivity in units of $\mu\Omega$ -cm, a more common unit (10 pts total)

 $1 \Omega = 10^6 \mu\Omega$ $1 m = 10^2 cm$ 2 pts 2 pts $\rho = (10^{-2} \,\Omega\text{-}m)(10^6 \,\mu\Omega \,/\Omega)(\,10^2 cm/m)$ 4 pts 2 pts $= 1 \times 10^6 \, \mu \Omega$ -cm

2) For Si at 300K, do the following: (Use cm⁻³ as your units.)

- a) $N_D = 10^{20} \text{ cm}^{-3}$; $N_A \ll N_D$. Calculate the equilibrium electron concentration (n) and hole concentration (p). (15 pts total) Since $N_A << N_D$ and $n_i << N_D$: $n = N_D = 10^{20} \text{ cm}^{-3}$ $p = n_i^2/n$
- 6 pts

6 pts

- $=(10^{10} cm^{-3})^2/10^{20} cm^{-3}=1 cm^{-3}$ 3 pts
- b) $N_D = 10^{10} \text{ cm}^{-3}$; $N_A << N_D$. Calculate the equilibrium electron concentration (n) and hole concentration (p). (15 pts total) Since $N_A << N_D$, $N_A \approx 0$:

4 pts
$$n = \frac{N_D - N_A}{2} + \left[\left(\frac{N_D - N_A}{2} \right)^2 + n_i^2 \right]^{\frac{1}{2}}$$

4 pts
$$= \frac{10^{10}cm^{-3}}{2} + \left[\left(\frac{10^{10}cm^{-3}}{2}\right)^2 + \left(10^{10}cm^{-3}\right)^2\right]^{\frac{1}{2}} = 1.62 \times 10^{10} cm^{-3}$$

4 pts
$$p = n_i^2/n$$

3 pts =
$$(10^{10} \text{ cm}^{-3})^2 / (1.62 \times 10^{10} \text{ cm}^{-3}) = 6.18 \times 10^9 \text{ cm}^{-3}$$

c) $N_A = 10^{20} \text{ cm}^{-3}$; $N_D << N_A$. Calculate the equilibrium electron concentration (n) and hole concentration (p). (15 pts total) Since $N_D < < N_A$ and $n_i < < N_A$:

6 pts
$$p = N_A = 10^{20} cm^2$$

6 pts

- $\overset{r}{n} = n_i^{2/p} \\ = (10^{10} cm^{-3})^2 / 10^{20} cm^{-3} = 1 cm^{-3}$ 3 pts
- d) $N_A = 10^{10} \text{ cm}^{-3}$; $N_D << N_A$. Calculate the equilibrium electron concentration (n) and hole concentration (p). (15 pts total) Since $N_D << N_A$, $N_D \approx 0$:

4 pts
$$p = \frac{N_A - N_D}{2} + \left[\left(\frac{N_A - N_D}{2} \right)^2 + n_i^2 \right]^{\frac{1}{2}}$$

4 pts
$$= \frac{10^{10} cm^{-3}}{2} + \left[\left(\frac{10^{10} cm^{-3}}{2}\right)^2 + \left(10^{10} cm^{-3}\right)^2\right]^{\frac{1}{2}} = 1.62 \times 10^{10} cm^{-3}$$

4 pts $n = n^{\frac{2}{10}}$

3 pts
$$= (10^{10} \text{ cm}^{-3})^2 / (1.62 \times 10^{10} \text{ cm}^{-3}) = 6.18 \times 10^9 \text{ cm}^{-3}$$

- 3) For the silicon sample at T = 300K shown below, given $N_A = 10^{17}$ cm⁻³, $N_D \ll N_A$,
 - a) Find the resistivity ρ of the Si to within 10%. For units, use Ω -cm. (10 pts total)
 - **10 pts** Off the graph: $\rho = .189 \ \Omega$ -cm Allowed values are (.170-.208 Ω -cm) Full credit also received if resistivity is calculated from the equation.
 - b) Calculate the resistance R_{AB} in units Ω , for the following geometry: (10 pts total)
 - A = Wt2 pts
 - $= (1mmx250\mu m)(1cm/10mm)(1cm/10^4 \mu m) = 2.5x10^{-3} cm^2$ 2 pts
 - $R = \rho l/A = (.189 \ \Omega cm)(1cm)/(2.5x10^{-3} cm^2)$ 4 pts
 - $= 75.6 \Omega$ 2 pts Range of R excepted is: $68-83.2 \Omega$ due to errors from graph readings.