## EECS 170A

## Professor Burke Section B

Homework \#2 Solutions and Grading Criteria

1) A thin metal resistor as shown in the figure below has a resistance of $1 \mathrm{M} \Omega$. It is 1 mm long, $10 \mu \mathrm{~m}$ wide, and $1 \mu \mathrm{~m}$ thick.
a) Calculate the resistivity ( $\rho$ ), in units of $\Omega-\mathrm{m}$. ( 10 pts total)
```
2 pts \(\quad A=W t\)
2 pts \(=(10 \mu m \times 1 \mu m)\left(1 m^{2} / 10^{12} \mu m^{2}\right)=1 \times 10^{-11} m^{2}\)
2 pts \(\quad \rho=R A / l\)
2 pts \(\quad=\left[\left(10^{6} \Omega\right)\left(1 \times 10^{-11} \mathrm{~m}^{2}\right)\right] /[(1 \mathrm{~mm})(1 \mathrm{~m} / 1000 \mathrm{~mm})]\)
2 pts \(\quad=1 \times 10^{-2} \Omega-m\)
```

b) Now express the resistivity in units of $\mu \Omega-\mathrm{cm}$, a more common unit ( $\mathbf{1 0}$ pts total)

```
2 pts }\quad1\Omega=1\mp@subsup{0}{}{6}\mu
2 pts }\quad1\textrm{m}=1\mp@subsup{0}{}{2}\textrm{cm
4 pts }\quad\rho=(1\mp@subsup{0}{}{-2}\Omega-m)(1\mp@subsup{0}{}{6}\mu\Omega/\Omega)(1\mp@subsup{0}{}{2}\textrm{cm}/\textrm{m}
2 pts = 1x106 \mu\Omega-cm
```

2) For Si at 300 K , do the following: (Use $\mathrm{cm}^{-3}$ as your units.)
a) $\mathrm{N}_{\mathrm{D}}=10^{20} \mathrm{~cm}^{-3} ; \mathrm{N}_{\mathrm{A}} \ll \mathrm{N}_{\mathrm{D}}$. Calculate the equilibrium electron concentration ( n ) and hole concentration (p). ( $\mathbf{1 5}$ pts total) Since $N_{A} \ll N_{D}$ and $\mathrm{n}_{\mathrm{i}} \ll N_{D}$ :
6 pts $n=N_{D}=10^{20} \mathrm{~cm}^{-3}$
6 pts $\quad p=n_{i}^{2} / n$
3 pts $=\left(10^{10} \mathrm{~cm}^{-3}\right)^{2} / 10^{20} \mathrm{~cm}^{-3}=1 \mathrm{~cm}^{-3}$
b) $\mathrm{N}_{\mathrm{D}}=10^{10} \mathrm{~cm}^{-3} ; \mathrm{N}_{\mathrm{A}} \ll \mathrm{N}_{\mathrm{D}}$. Calculate the equilibrium electron concentration (n) and hole concentration (p). (15 pts total) Since $N_{A} \ll N_{D}, N_{A} \approx 0$ :
4 pts $\quad n=\frac{N_{D}-N_{A}}{2}+\left[\left(\frac{N_{D}-N_{A}}{2}\right)^{2}+n_{i}^{2}\right]^{1 / 2}$
4 pts $\quad=\frac{10^{10} \mathrm{~cm}^{-3}}{2}+\left[\left(\frac{10^{10} \mathrm{~cm}^{-3}}{2}\right)^{2}+\left(10^{10} \mathrm{~cm}^{-3}\right)^{2}\right]^{1 / 2}=1.62 \times 10^{10} \mathrm{~cm}^{-3}$
4 pts $\quad p=n_{i}^{2} / n$
3 pts $=\left(10^{10} \mathrm{~cm}^{-3}\right)^{2} /\left(1.62 \times 10^{10} \mathrm{~cm}^{-3}\right)=6.18 \times 10^{9} \mathrm{~cm}^{-3}$
c) $\mathrm{N}_{\mathrm{A}}=10^{20} \mathrm{~cm}^{-3} ; \mathrm{N}_{\mathrm{D}} \ll \mathrm{N}_{\mathrm{A}}$. Calculate the equilibrium electron concentration (n) and hole concentration (p). (15 pts total) Since $N_{D} \ll N_{A}$ and $\mathrm{n}_{\mathrm{i}} \ll N_{A}$ :
6 pts $\quad p=N_{A}=10^{20} \mathrm{~cm}^{-3}$
6 pts $n=n_{i}{ }^{2} / p$
3 pts $\quad=\left(10^{10} \mathrm{~cm}^{-3}\right)^{2} / 10^{20} \mathrm{~cm}^{-3}=1 \mathrm{~cm}^{-3}$
d) $\mathrm{N}_{\mathrm{A}}=10^{10} \mathrm{~cm}^{-3} ; \mathrm{N}_{\mathrm{D}} \ll \mathrm{N}_{\mathrm{A}}$. Calculate the equilibrium electron concentration (n) and hole concentration (p). (15 pts total) Since $N_{D} \ll N_{A}, N_{D} \approx 0$ :
4 pts $\quad p=\frac{N_{A}-N_{D}}{2}+\left[\left(\frac{N_{A}-N_{D}}{2}\right)^{2}+n_{i}^{2}\right]^{1 / 2}$
4 pts $\quad=\frac{10^{10} \mathrm{~cm}^{-3}}{2}+\left[\left(\frac{10^{10} \mathrm{~cm}^{-3}}{2}\right)^{2}+\left(10^{10} \mathrm{~cm}^{-3}\right)^{2}\right]^{1 / 2}=1.62 \times 10^{10} \mathrm{~cm}^{-3}$
4 pts $n=n_{i}{ }^{2} / p$
3 pts $\quad=\left(10^{10} \mathrm{~cm}^{-3}\right)^{2} /\left(1.62 \times 10^{10} \mathrm{~cm}^{-3}\right)=6.18 \times 10^{9} \mathrm{~cm}^{-3}$
3) For the silicon sample at $\mathrm{T}=300 \mathrm{~K}$ shown below, given $\mathrm{N}_{\mathrm{A}}=10^{17} \mathrm{~cm}^{-3}, \mathrm{~N}_{\mathrm{D}} \ll \mathrm{N}_{\mathrm{A}}$,
a) Find the resistivity $\rho$ of the Si to within $10 \%$. For units, use $\Omega-\mathrm{cm}$. ( $\mathbf{1 0} \mathbf{p t s}$ total)

10 pts Off the graph: $\rho=.189 \Omega-\mathrm{cm}$
Allowed values are (.170-. $208 \Omega-\mathrm{cm}$ )
Full credit also received if resistivity is calculated from the equation.
b) Calculate the resistance $\mathrm{R}_{\mathrm{AB}}$ in units $\Omega$, for the following geometry: (10 pts total)

2 pts $\quad A=W t$
2 pts $\quad=(1 \mathrm{mmx} 250 \mu \mathrm{~m})(1 \mathrm{~cm} / 10 \mathrm{~mm})\left(1 \mathrm{~cm} / 10^{4} \mu \mathrm{~m}\right)=2.5 \times 10^{-3} \mathrm{~cm}^{2}$
4 pts $\quad R=\rho l / A=(.189 \Omega-\mathrm{cm})(1 \mathrm{~cm}) /\left(2.5 \times 10^{-3} \mathrm{~cm}^{2}\right)$
2 pts $\quad=75.6 \Omega$
Range of $R$ excepted is: 68-83.2 $\Omega$ due to errors from graph readings.

