EECS 170A

Professor Burke Section B
Homework \#3 Solutions and Grading Criteria

1) Answer a-d for the figure shown below:
a) Do the equilibrium conditions prevail? How do you know? (5 pts total)

Yes because E_{F} is constant. (no points if reason not given)
b) Sketch the electrostatic potential (V) inside the semiconductor as a function of x . (5 pts total)

Graph must be linear with a positive slope between $x=0$ and $x=L / 2$ and negative slope between $x=L / 2$ and $x=L$. It does not matter where the graph is centered vertically as long as it has the correct shape.
c) Sketch the electric field () inside the semiconductor as a function of x. ($5 \mathbf{p t s}$ total)

Graph must be a negative constant between $x=0$ and $x=L / 2$ and positive constant between $x=L / 2$ and $x=L$.
d) Roughly sketch n and p versus x. ($\mathbf{1 0} \mathbf{p t s}$ total)

n and p graphs must be centered around n_{i} for credit. Graphs should be mirrors of each other. n graph should look like V graph. N and p graphs are 5 pts each.
2) Answer a-d for the figure shown below:
a) Do the equilibrium conditions prevail? How do you know? (5 pts total)

Yes because E_{F} is constant. (no points if reason not given)
b) Sketch the electrostatic potential (V) inside the semiconductor as a function of x . ($5 \mathbf{p t s}$ total)

Graph must have correct shape. Center of graph should be at L/2. It does not matter where the graph is centered vertically as long as it has the correct shape.
c) Sketch the electric field () inside the semiconductor as a function of x. ($5 \mathbf{p t s}$ total)

Graph must be positive, have correct shape, and be centered around L/2.
d) Roughly sketch n and p versus x. ($\mathbf{1 0} \mathbf{p t s}$ total)

n and p graphs must be centered around n_{i} for credit. Graphs should be mirrors of each other. n graph should look like V graph. n and p graphs are 5 pts each. If n and p cross n_{i} then only 3 pts each.
3) Answer a-d for the figure shown below:
a) Do the equilibrium conditions prevail? How do you know? (5 pts total)

Yes because E_{F} is constant. (no points if reason not given)
b) Sketch the electrostatic potential (V) inside the semiconductor as a function of x . (5 pts total)

Graph must have correct shape. Slope changes occur at L/3 and 2L/3. It does not matter where the graph is centered vertically as long as it has the correct shape.
c) Sketch the electric field () inside the semiconductor as a function of x . ($\mathbf{5} \mathbf{~ p t s}$ total)

d) Roughly sketch n and p versus x. ($\mathbf{1 0} \mathbf{p t s}$ total)

n and p graphs must be centered around n_{i} for credit. Graphs should be mirrors of each other. n graph should look like V graph. n and p graphs are 5 pts each. If n and p cross n_{i} then only 3 pts each.
4) For Si at $\mathrm{T}=300 \mathrm{~K}$ calculate $\mathrm{E}_{\mathrm{C}}-\mathrm{E}_{\mathrm{F}}$ and sketch $\mathrm{E}_{\mathrm{c}}, \mathrm{E}_{\mathrm{F}}, \mathrm{E}_{\mathrm{i}}$, and E_{V} as in figure 2.18 of the book for the following cases:
a) $\mathrm{N}_{\mathrm{D}}=10^{14} \mathrm{~cm}^{-3} ; \mathrm{N}_{\mathrm{A}} \ll \mathrm{N}_{\mathrm{D}}$. (5 pts total)

1 pts $\quad n=N_{D}=10^{14} \mathrm{~cm}^{-3}$
1 pts $\quad n=N_{C}\left(2 / p i^{1 / 2}\right) F_{1 / 2}\left(\eta_{c}\right)$
1 pts $\quad F_{1 / 2}=1 / 2 \mathrm{npi}^{1 / 2} / N_{C}=1 / 2\left(10^{14} \mathrm{~cm}^{-3}\right)\left(\mathrm{pi}^{1 / 2}\right) /\left(3.217 \times 10^{19} \mathrm{~cm}^{-3}\right)=2.75 \times 10^{-6}$
2 pts $\quad\left(E_{C}-E_{F}\right)=-k T \ln \left(n / N_{C}\right)=-(0.0259 \mathrm{eV}) \ln \left(10^{14} / 3.217 x 10^{19}\right)=.328 \mathrm{eV}(.3-.4 \mathrm{eV}$ accepted. $)$
b) $\mathrm{N}_{\mathrm{D}}=10^{20} \mathrm{~cm}^{-3} ; \mathrm{N}_{\mathrm{A}} \ll \mathrm{N}_{\mathrm{D}}$. (5 pts total)

1 pts $\quad n=N_{D}=10^{20} \mathrm{~cm}^{-3}$
1 pts $\quad n=N_{C}\left(2 / p i^{1 / 2}\right) F_{1 / 2}\left(\eta_{c}\right)$
1 pts $\quad F_{1 / 2}=1 / 2 \mathrm{npi}^{1 / 2} / N_{C}=1 / 2\left(10^{20} \mathrm{~cm}^{-3}\right)\left(\mathrm{pi}^{1 / 2}\right) /\left(3.217 \times 10^{19} \mathrm{~cm}^{-3}\right)=2.75$
1 pts From graph: $\eta_{c}=2.2$
1 pts $\quad\left(E_{C}-E_{F}\right)=-\eta_{c} k T=-2.2(0.0259 \mathrm{eV})=-.057 \mathrm{eV}(.05-.065 \mathrm{eV}$ accepted $)$
c) $\mathrm{N}_{\mathrm{A}}=10^{14} \mathrm{~cm}^{-3} ; \mathrm{N}_{\mathrm{D}} \ll \mathrm{N}_{\mathrm{A}}$. (5 pts total)

1 pts $\quad p=N_{A}=10^{14} \mathrm{~cm}^{-3}$
1 pts $\quad n=n_{i}^{2} / p=\left(10^{20} \mathrm{~cm}^{-6}\right) /\left(10^{14} \mathrm{~cm}^{-3}\right)=10^{6} \mathrm{~cm}^{-3}$
1 pts $\quad n=N_{C}\left(2 / p i^{1 / 2}\right) F_{1 / 2}\left(\eta_{c}\right)$
$F_{1 / 2}=1 / 2 \mathrm{npi}^{1 / 2} / N_{C}=1 / 2\left(10^{6} \mathrm{~cm}^{-3}\right)\left(\mathrm{pi}^{1 / 2}\right) /\left(3.217 \times 10^{19} \mathrm{~cm}^{-3}\right)=2.75 \times 10^{-14}$
2 pts $\quad\left(E_{C}-E_{F}\right)=-k T \ln \left(n / N_{C}\right)=-(0.0259 \mathrm{eV}) \ln \left(10^{6} / 3.217 x 10^{19}\right)=.801 \mathrm{eV}(.75 \mathrm{eV}-.85 \mathrm{eV}$ accepted $)$
d) $\mathrm{N}_{\mathrm{A}}=10^{20} \mathrm{~cm}^{-3} ; \mathrm{N}_{\mathrm{D}} \ll \mathrm{N}_{\mathrm{A}}$. (5 pts total)

1 pts $p=N_{A}=10^{20} \mathrm{~cm}^{-3}$
1 pts $\quad n=n_{i}^{2} / p=\left(10^{20} \mathrm{~cm}^{-6}\right) /\left(10^{20} \mathrm{~cm}^{-3}\right)=1 \mathrm{~cm}^{-3}$
1 pts $\quad n=N_{C}\left(2 / p i^{1 / 2}\right) F_{1 / 2}\left(\eta_{c}\right)$
$F_{1 / 2}=1 / 2 n p i^{1 / 2} / N_{C}=1 / 2\left(1 \mathrm{~cm}^{-3}\right)\left(p i^{1 / 2}\right) /\left(3.217 \times 10^{19} \mathrm{~cm}^{-3}\right)=2.75 \times 10^{-20}$
2 pts $\quad\left(E_{C}-E_{F}\right)=-k T \ln \left(n / N_{C}\right)=-(0.0259 \mathrm{eV}) \ln \left(1 / 3.217 x 10^{19}\right)=1.163 \mathrm{eV}(1 \mathrm{eV}-1.3 \mathrm{eV}$ accepted $)$
e) $\mathrm{N}_{\mathrm{A}}=\mathrm{N}_{\mathrm{D}}=10^{20} \mathrm{~cm}^{-3}$. (5 pts total)

1 pts $n=\frac{N_{D}-N_{A}}{2}+\left[\left(\frac{N_{D}-N_{A}}{2}\right)^{2}+n_{i}^{2}\right]^{1 / 2}=n_{i}=10^{10} \mathrm{~cm}^{-3}$
1 pts $p=n_{i}=10^{10} \mathrm{~cm}^{-3}$
3 pts $E_{C}-E_{F}=E_{C}-E_{i}=.567 \mathrm{eV}$ (can be calculated with equations, but needs to contain 3 significant figures)

