ECE 113A Professor Burke Section B Homework #4 Solutions and Grading Criteria

1) For Si at 300K, with no light, and under steady state conditions, with $N_A = 10^{17}$ cm⁻³, and zero electric field: a) Find $\Delta n_p(x)$ from 0 to infinity if $\Delta n_p(0) = 10^{14} \text{ cm}^{-3}$; $\Delta n_p(\infty) = 0$. (Use $\tau = 1 \mu s$.) (10 pts total) 2 pts $D_N d^2 \Delta n_p(x)/dx^2 + \Delta n_p(x)/\tau_n = 0$ 2 pts $L_N = \sqrt{D_N \tau_n} = \sqrt{(kt/q)} \mu_n \tau_n = [(.0259V)(801cm^2/V-s)(1\mu s)]^{1/2}} = 45.5 \,\mu m$ 2 pts $\Delta n_p(x) = A e^{-(x/LN)} + B e^{(x/LN)}$ 2 pts $\begin{cases} \Delta n_p(0) = A + B = 10^{14} \, cm^{-3} \\ \Delta n_p(\infty) = B e^{(\infty)} = 0 \Rightarrow B = 0 \\ A = 10^{14} \, cm^{-3} \end{cases}$ $\Delta n_n(x) = 10^{14} e^{-(x/45.5\mu m)} cm^{-3}$ 2 pts b) Find n(x) under same conditions. (10 pts total) **3 pts** $n_o = n_i^2/p_o = 10^3 \, cm^{-3}$ 3 pts $n(x) = \Delta n(x) + n_o$ Either answer $\begin{cases} = 10^{14} e^{-(x/45.5\mu m)} cm^{-3} + 10^3 cm^{-3} \\ = 10^{14} e^{-(x/45.5\mu m)} cm^{-3} \end{cases}$ c) Find p(x) under same conditions. (10 pts total) $p(x) = p_o = N_A$ 5 pts $= 10^{17} cm^{-3}$ 5 pts 2) For Si at 300K, with no light, and under steady state conditions, with $N_D = 10^{17}$ cm⁻³, and zero electric field: a) Find $\Delta p_n(x)$ from x=0 to x=1 µm if $\Delta p_n(0) = 10^{11}$ cm⁻³; $\Delta p_n(x=1 µm) = 10^8$ cm⁻³. Use $\tau=1 µs$. (10 pts total) 2 pts $D_P d^2 \Delta p_n(x)/dx^2 + \Delta p_n(x)/\tau_p = 0$ $L_P = \sqrt{D_P \tau_p} = \sqrt{(kt/q)} \mu_p \tau_p = [(.0259V)(331 \text{ cm}^2/V\text{-}s)(1\mu s)]^{1/2} = 29.3 \ \mu m$ $\Delta p_n(x) = A e^{-(x/LP)} + B e^{(x/LP)}$ 2 pts 2 pts 2 pts $\Delta p_n(x) = A e^{-1} B e^{-1}$ 2 pts $\begin{cases} \Delta p_n(0) = A + B = 10^{11} cm^{-3} \\ \Delta p_n(1\mu m) = A e^{-(1/29.3)} + B e^{(1/29.3)} = 10^8 cm^{-3} \\ A = 1.51x10^{12} cm^{-3} \& B = -1.41x10^{12} cm^{-3} \end{cases}$ 2 pts $\Delta p_n(x) = [1.51x10^{12} e^{-(x/29.3\mu m)} - 1.41x10^{12} e^{(x/29.3\mu m)}]cm^{-3}$ b) Find p(x) under same conditions. (10 pts total) $p_o = n_i^2 / n_o = 10^3 cm^{-3}$ 3 pts 3 pts $p(x) = \Delta p(x) + p_o$ Either answer $\int = [1.51x10^{12} e^{-(x/29.3\mu m)} - 1.41x10^{12} e^{(x/29.3\mu m)}]cm^{-3} + 10^3 cm^{-3}$ $\int \approx [1.51 \times 10^{12} e^{-(x/29.3 \mu m)} - 1.41 \times 10^{12} e^{(x/29.3 \mu m)}] cm^{-3}$ 4 pts c) Find n(x) under same conditions. (10 pts total) $n(x) = n_o = N_D$ = 10¹⁷ cm⁻³ 5 pts 5 pts 3) For a Si p-n diode at 300K, with no applied voltage, with $N_A = 10^{14}$ cm⁻³, and $N_D = 10^{19}$ cm⁻³ a) Calculate V_{bi} in units of V (10 pts total) $V_{bi} = (kt/q) \ln(N_A N_D/n_i^2)$ 4 pts $= (.0259V) ln[(10^{14})(10^{19})/(10^{10})^2]$ 3 pts = 0.775V3 pts b) Calculate x_p in units of μm (10 pts total) $\begin{aligned} x_p &= \left[(2K_s \varepsilon_0/q) V_{bi} N_D / N_A (N_A + N_D) \right]^{1/2} \\ &= \left[(2)(11.8)(8.85x10^{-14} F/cm)(10^{19} cm^{-3})(.775V) / (1.6x10^{-19})(10^{14} cm^{-3})(10^{14} cm^{-3} + 10^{19} cm^{-3}) \right]^{1/2} \end{aligned}$ 4 pts 3 pts $= 3.181 \ \mu m$ 3 pts c) Calculate x_n in units of μm (10 pts total) 4 pts $x_n = N_A x_p / N_D$

3 pts $= (10^{14})(3.181 \ \mu m)/10^{19}$

3 pts = $3.181 \times 10^{-5} \, \mu m$

d) Calculate $W = x_n + x_p$ in units of μm (10 pts total) 5 pts $W = 3.181 \ \mu m + 3.181 x 10^{-5} \ \mu m$ 5 pts $= 3.181 \ \mu m$