ECE 113A

Professor Burke Section B

Homework \#4 Solutions and Grading Criteria

1) For Si at 300 K , with no light, and under steady state conditions, with $\mathrm{N}_{\mathrm{A}}=10^{17} \mathrm{~cm}^{-3}$, and zero electric field:
a) Find $\Delta \mathrm{n}_{\mathrm{p}}(\mathrm{x})$ from 0 to infinity if $\Delta \mathrm{n}_{\mathrm{p}}(0)=10^{14} \mathrm{~cm}^{-3} ; \Delta \mathrm{n}_{\mathrm{p}}(\infty)=0$. (Use $\tau=1 \mu \mathrm{~s}$.) ($\mathbf{1 0}$ pts total)

2 pts $\quad D_{N} d^{2} \Delta n_{p}(x) / d x^{2}+\Delta n_{p}(x) / \tau_{n}=0$
2 pts $L_{N}=\sqrt{ } D_{N} \tau_{n}=\sqrt{ }(k t / q) \mu_{n} \tau_{n}=\left[(.0259 V)\left(801 \mathrm{~cm}^{2} / V-s\right)(1 \mu s)\right]^{1 / 2}=45.5 \mu \mathrm{~m}$
2 pts $\quad \Delta n_{p}(x)=A e^{-(x / L N)}+B e^{(x / L N)}$
2 pts $\left\{\begin{array}{l}\Delta n_{p}(0)=A+B=10^{14} \mathrm{~cm}^{-3} \\ \Delta n_{p}(\infty)=B e^{(\infty)}=0 \Rightarrow B=0\end{array}\right.$
2 pts $\left\{\begin{array}{l}\Delta n_{p}(\infty)=B e^{(\infty)}=0 \Rightarrow B=0 \\ A=10^{14} \mathrm{~cm}^{-3}\end{array}\right.$
2 pts $\quad \Delta n_{p}(x)=10^{14} e^{-(x / 45.5 \mu m)} \mathrm{cm}^{-3}$
b) Find $\mathrm{n}(\mathrm{x})$ under same conditions. (10 pts total)

3 pts $\quad n_{o}=n_{i}^{2} / p_{o}=10^{3} \mathrm{~cm}^{-3}$
3 pts $n(x)=\Delta n(x)+n_{o}$
Either answer $\left\{=10^{14} e^{-(x / 45.5 \mu \mathrm{~mm})} \mathrm{cm}^{-3}+10^{3} \mathrm{~cm}^{-3}\right.$
4 pts $\quad\left\{10^{14} e^{-(x / 45.5 \mu m)} \mathrm{cm}^{-3}\right.$
c) Find $\mathrm{p}(\mathrm{x})$ under same conditions. ($\mathbf{1 0} \mathbf{p t s}$ total)
$\begin{array}{rlrl}\mathbf{5} \text { pts } & p(x) & =p_{o}=N_{A} \\ 5 & \text { pts } & & =10^{17} \mathrm{~cm}^{-3}\end{array}$
2) For Si at 300 K , with no light, and under steady state conditions, with $\mathrm{N}_{\mathrm{D}}=10^{17} \mathrm{~cm}^{-3}$, and zero electric field:
a) Find $\Delta \mathrm{p}_{\mathrm{n}}(\mathrm{x})$ from $\mathrm{x}=0$ to $\mathrm{x}=1 \mu \mathrm{~m}$ if $\Delta \mathrm{p}_{\mathrm{n}}(0)=10^{11} \mathrm{~cm}^{-3} ; \Delta \mathrm{p}_{\mathrm{n}}(\mathrm{x}=1 \mu \mathrm{~m})=10^{8} \mathrm{~cm}^{-3}$. Use $\tau=1 \mu \mathrm{~s}$. (10 pts total)

2 pts $\quad D_{P} d^{2} \Delta p_{n}(x) / d x^{2}+\Delta p_{n}(x) / \tau_{p}=0$
2 pts $\quad L_{P}=\sqrt{ } D_{P} \tau_{p}=\sqrt{ }(k t / q) \mu_{p} \tau_{p}=\left[(.0259 V)\left(331 \mathrm{~cm}^{2} / V-s\right)(1 \mu s)\right]^{1 / 2}=29.3 \mu \mathrm{~m}$
2 pts $\quad \Delta p_{n}(x)=A e^{-(x / L P)}+B e^{(x / L P)}$
2 pts $\left\{\begin{array}{l}\Delta p_{n}(0)=A+B=10^{I I} \mathrm{~cm}^{-3} \\ \Delta p_{n}(1 \mu \mathrm{~m})=A e^{-(I / 29.3)}\end{array}\right.$
2 pts $\left\{\begin{array}{l}\Delta p_{n}(1 \mu m)=A e^{-(1 / 29.3)}+B e^{(1 / 29.3)}=10^{8} \mathrm{~cm}^{-3} \\ A=1.51 \times 10^{12} \mathrm{~cm}^{-3} \& B=-1.41 \times 10^{12} \mathrm{~cm}^{-3}\end{array}\right.$
2 pts $\quad \Delta p_{n}(x)=\left[1.51 x 10^{12} e^{-(x / 29.3 \mu m)}-1.41 x 10^{I 2} e^{(x / 29.3 \mu m)}\right] \mathrm{cm}^{-3}$
b) Find $\mathrm{p}(\mathrm{x})$ under same conditions. (10 pts total)

3 pts $\quad p_{o}=n_{i}^{2} / n_{o}=10^{3} \mathrm{~cm}^{-3}$
3 pts $\quad p(x)=\Delta p(x)+p_{o}$
Either answer $\left\{=\left[1.51 \times 10^{12} e^{-(x / 29.3 \mu m)}-1.41 \times 10^{12} e^{(x / 29.3 \mu m)}\right] \mathrm{cm}^{-3}+10^{3} \mathrm{~cm}^{-3}\right.$
4 pts $\quad\left\{\left[1.51 \times 10^{12} e^{-(x / 29.3 \mu m)}-1.41 \times 10^{12} e^{(x / 29.3 \mu m)}\right] \mathrm{cm}^{-3}\right.$
c) Find $n(x)$ under same conditions. ($\mathbf{1 0} \mathbf{p t s}$ total)
$\begin{aligned} 5 & \text { pts } & n(x) & =n_{o}=N_{D} \\ 5 & \text { pts } & & =10^{17} \mathrm{~cm}^{-3}\end{aligned}$
3) For a Si p-n diode at 300 K , with no applied voltage, with $\mathrm{N}_{\mathrm{A}}=10^{14} \mathrm{~cm}^{-3}$, and $\mathrm{N}_{\mathrm{D}}=10^{19} \mathrm{~cm}^{-3}$
a) Calculate V_{bi} in units of V ($\mathbf{1 0} \mathbf{~ p t s ~ t o t a l) ~}$
$\begin{array}{ll}\begin{array}{ll}\mathbf{4} \text { pts } & V_{b i}\end{array}=(k t / q) \ln \left(N_{A} N_{D} / n_{i}^{2}\right) \\ \mathbf{3} \text { pts } & =(.0259 \mathrm{~V}) \ln \left[\left(10^{14}\right)\left(10^{19}\right) /\left(10^{10}\right)^{2}\right] \\ \mathbf{3} \text { pts } & =0.775 \mathrm{~V}\end{array}$
b) Calculate x_{p} in units of $\mu \mathrm{m}$ ($\mathbf{1 0} \mathbf{p t s}$ total)

$$
\begin{array}{ll}
\mathbf{4} \text { pts } & x_{p}=\left[\left(2 K_{s} \varepsilon_{0} / q\right) V_{b i} N_{D} / N_{A}\left(N_{A}+N_{D}\right)\right]^{1 / 2} \\
\mathbf{3} \text { pts } & \\
\mathbf{3} \text { pts } & =\left[(2)(11.8)\left(8.85 \times 10^{-14} \mathrm{~F} / \mathrm{cm}\right)\left(10^{19} \mathrm{~cm}^{-3}\right)(.775 \mathrm{~V}) /\left(1.6 \times 10^{-19}\right)\left(10^{14} \mathrm{~cm}^{-3}\right)\left(10^{14} \mathrm{~cm}^{-3}+10^{19} \mathrm{~cm}^{-3}\right)\right]^{1 / 2} \\
& =3.181
\end{array}
$$

c) Calculate x_{n} in units of $\mu \mathrm{m}$ ($\mathbf{1 0} \mathbf{p t s}$ total)

$$
\begin{aligned}
\mathbf{4} \text { pts } & x_{n} & =N_{A} x_{p} / N_{D} \\
\mathbf{3} \text { pts } & & =\left(10^{14}\right)(3.181 \mu \mathrm{~m}) / 10^{19} \\
\mathbf{3} \text { pts } & & =3.181 \times 10^{-5} \mu \mathrm{~m}
\end{aligned}
$$

d) Calculate $W=x_{n}+x_{p}$ in units of $\mu \mathrm{m}$ (10 pts total)
$\begin{aligned} \mathbf{5} \text { pts } & W & =3.181 \mu \mathrm{~m}+3.181 \times 10^{-5} \mu \mathrm{~m} \\ \mathbf{5} \text { pts } & & =3.181 \mu \mathrm{~m}\end{aligned}$
5 pts $\quad=3.181 \mu \mathrm{~m}$

