EECS170a Final Solutions

Figure 1: Question 1

1. A) (10 points) Find the value of Ids and Vds at dc for this circuit. (The graph shows the MOSFET I-V characteristics.)

Solution:
The voltage divider on the gate will maintain a gate voltage of $V_{g}=V_{g s}=+5 V$ which indicates that the values of $I_{d s}$ and $V_{d s}$ will lay on the $V_{g s}=5 V$ curve. If we assume that the FET is operating in saturation then $I_{d s}=4 m A$ (this is an assumption that we will have to confirm at the end). Under this assumption,

$$
\begin{aligned}
V_{d s} & =10 \mathrm{~V}-I_{d s} R_{d} \\
& =10 \mathrm{~V}-(4 \mathrm{~mA} \cdot 1 \mathrm{k} \Omega) \\
V_{d s} & =6 \mathrm{~V}
\end{aligned}
$$

With $V_{d s}=6 V$ we can refer back to the $I_{d s}$ vs $V_{d s}$ plot and confirm our original assumption that the FET is in saturation.
Grading Criteria

- 5 pts for $I_{d s}=4 m A$
- 5 pts for $V_{d s}=6 \mathrm{~V}$
B) (15 points) Find the voltage gain of this circuit $\left(V_{\text {out }} / V_{\text {in }}\right)$ at ac. Hint: An ac voltage changes on the gate causes an ac source-drain current.

Solution:

By applying an ac signal $V_{i n}$ to the gate, the gate voltage will fluctuate up and down about the dc biased value of $V_{g s}=5 \mathrm{~V}$. If we take this fluctuation to have a max $/ \mathrm{min}$ values of $V_{i n}= \pm 1 V$ then $V_{G S}=V_{g s}+V_{i n}=4 V$ or 6 V . The corresponding fluctuations to $I_{d s}$ can be read off the plot to be $\Delta I_{d s}=2 \mathrm{~mA}$ and $\Delta I_{d s}=3 m A$, for $V_{d s}=4 \mathrm{~V}$ and $V_{d s}=6 \mathrm{~V}$, respectively. Using $\Delta V_{\text {out }}=10 \mathrm{~V}-$ $\Delta I_{d s} R_{d}$ we obtain $\Delta V_{\text {out }}=2 V$ for the negative swings in $V_{d s}$ and $\Delta V_{\text {out }}=3 \mathrm{~V}$ for positive unit swings in gate-source voltage. Thus, the voltage gain $V_{o u t} / V_{\text {in }}$ is

$$
\begin{aligned}
\left|\frac{V_{\text {out }}}{V_{\text {in }}}\right|=V_{d s} & =10 \mathrm{~V}-I_{d s} R_{d} \\
& =2 \text { or } 3
\end{aligned}
$$

Grading Criteria:

- 15 pts for $\left|V_{\text {out }} / V_{\text {in }}\right| \in(2,3)$ and correct work shown. In other words, correct answer but incorrect approach, no credit.

2. Use these graphs for the problem state on the next page.

Figure 2: Question 2
A) (10 points) Find the resistance $R A B$ of this piece of silicon, assuming it is n-type doped at $10^{17} \mathrm{~cm}^{-3}$.

Solution:
The value of μ_{n} for $N_{D}=10^{17} \mathrm{~cm}^{-3}$ can be read off the graph to be $\mu_{n}=$ $801 \mathrm{~cm}^{2} / V-s e c$.

$$
\begin{aligned}
R_{A B} & =\rho_{n} \frac{l}{A} \\
& =\frac{1}{q \mu_{n} N_{D}} \frac{l}{A} \\
& =\frac{1}{\left(1.6 \times 10^{-19} \mathrm{C}\right)\left(801 \mathrm{~cm}^{2} / V-\mathrm{sec}\right)\left(10^{17} \mathrm{~cm}^{-3}\right)} \frac{10 \mu \mathrm{~m}}{1 \mu \mathrm{~m} \cdot 0.1 \mu \mathrm{~m}} \\
& =\frac{1}{12.8} \frac{V \cdot \mathrm{sec} \cdot \mathrm{~cm}}{C} \cdot 10^{6} \mathrm{~cm}^{-1} \\
& =78 \mathrm{k} \Omega
\end{aligned}
$$

Grading Criteria:

(a) 2pts for $R_{A B}=\rho_{n} \frac{l}{A}$
(b) 3 pts for $\mu_{n} 801 \mathrm{~cm}^{2} / V-\mathrm{sec}$
(c) 2pts for $R_{A B}=\frac{1}{\left(1.6 \times 10^{-19} \mathrm{C}\right)\left(801 \mathrm{~cm}^{2} / V-\sec \right)\left(1^{17} \mathrm{~cm}^{-3}\right)} \frac{10 \mu m}{1 \mu m \cdot 0.1 \mu m}$. The length units can be $c m, \mu m, m$ units alright as long as it is equivalent t o the above.
(d) 3pts for $R \in(70 k \Omega, 100 k \Omega)$ or a form where by a simplification effort was made to obtain this result from item (3).
B) (5 points) Find the current density if $V_{A B}=1 V$ for the doping specified in part A.

Solution:

$$
\begin{aligned}
J_{A B}=\frac{I_{A B}}{A} & =\frac{V_{A B}}{A \cdot R_{A B}} \\
& =\frac{1 V}{1 \mu m \cdot 0.1 \mu m \cdot 78 \mathrm{k} \Omega} \\
& =1.28 \times 10^{4} \mathrm{~A} / \mathrm{cm}^{2}=\frac{10^{9}}{7.8} \mathrm{~A} / \mathrm{m}^{2}=\frac{10^{5}}{7.8} \mathrm{~A} / \mathrm{cm}^{2}=1.28 \times 10^{8} \mathrm{~A} / \mathrm{m}^{2}=1.28 \times 10^{-4} \mathrm{~A} / \mathrm{\mu m}^{2}
\end{aligned}
$$

Grading Criteria:

- 3 pts for $J_{A B}=\frac{1 V}{1 \mu m \cdot 0.1 \mu m \cdot 78 k \Omega}$
- 2pts for $J_{A B} \in\left(1.0 \times 10^{4} \mathrm{~A} / \mathrm{cm}^{2}, 1.6 \times 10^{4} \mathrm{~A} / \mathrm{cm}^{2}\right)$
C) (5 points) Find the resistance RAB of this piece of silicon, assuming it is p-type doped at $10^{17} \mathrm{~cm}^{-3}$.

Solution:

The value of μ_{n} for $N_{A}=10^{17} \mathrm{~cm}^{-3}$ can be read off the graph to be $\mu_{n}=$ $801 \mathrm{~cm}^{2} / V-s e c$.

$$
\begin{aligned}
R_{A B} & =\rho_{p} \frac{l}{A} \\
& =\frac{1}{q \mu_{p} N_{A}} \frac{l}{A} \\
& =\frac{1}{\left(1.6 \times 10^{-19} \mathrm{C}\right)\left(321 \mathrm{~cm}^{2} / \mathrm{V} \cdot \mathrm{sec}\right)\left(10^{17} \mathrm{~cm}^{-3}\right)} \frac{10 \mu \mathrm{~m}}{1 \mu \mathrm{~m} \cdot 0.1 \mu \mathrm{~m}} \\
& =\frac{1}{5.12} \frac{\mathrm{~V} \cdot \mathrm{sec} \cdot \mathrm{~cm}}{C} \cdot 10^{6} \mathrm{~cm}^{-1} \\
& =195 \mathrm{k} \Omega
\end{aligned}
$$

Grading Criteria:

- 1 pts for $R_{A B}=\rho_{n} \frac{l}{A}$
- 1 pts for $\mu_{n}=321 \mathrm{~cm}^{2} / V-\mathrm{sec}$
- 1 pts for $R_{A B}=\frac{1}{\left(1.6 \times 10^{-19} \mathrm{C}\right)\left(321 \mathrm{~cm}^{2} / V \cdot \mathrm{sec}\right)\left(10^{17} \mathrm{~cm}^{-3}\right)} \frac{10 \mu m}{1 \mu m \cdot 0.1 \mu m}$
- 2 pts for $R \in(150 k \Omega, 250 k \Omega)$
D) (5 points) Find the current density if $V_{A B}=1 V$ for the doping specified in part C.

Solution:

$$
\begin{aligned}
J_{A B}=\frac{I_{A B}}{A} & =\frac{V_{A B}}{A \cdot R_{A B}} \\
& =\frac{1 \mathrm{~V}}{1 \mu \mathrm{~m} \cdot 0.1 \mu \mathrm{~m} \cdot 195 \mathrm{k} \Omega} \\
& =5.12 \times 10^{3} \mathrm{~A} / \mathrm{cm}^{2}=5.12 \times 10^{7} \mathrm{~A} / \mathrm{m}^{2}=5.12 \times 10^{-5} \mathrm{~A} / \mu \mathrm{m}^{2}
\end{aligned}
$$

Grading Criteria:

- 3pts for $J_{A B}=\frac{1 V}{1 \mu m \cdot 0.1 \mu m \cdot 195 k \Omega}$
- 2 pts for $J_{A B} \in\left(4.5 \times 10^{3} A / \mathrm{cm}^{2}, 5.5 \times 10^{3} \mathrm{~A} / \mathrm{cm}^{2}\right)$

3. A) (12.5 points) Is this transistor biased in active mode?

Solution:
Since the transistor is pnp, it is active biased if the emitter-base junction is forward biased (i.e. $V_{E B}>0$) and the collector-base junction is reverse biased (i.e. $V_{C B}<$ $0)$. In the figure we have $V_{B}>V_{E}$ so $V_{E B}<0$ and the transistor is NOT in active mode.
Grading Criteria:

- 12.5 pts for Not active biased
B) (12.5 points) Is this transistor biased in active mode?

If so, find: (Assume $\beta=100$)

Figure 3: Question 2
Solution:
Since the transistor is npn, it is active biased if the emitter-base junction is forward biased (i.e. $V_{E B}<0$) and the collector-base junction is reverse biased (i.e. $V_{C B}>$ $0)$. In the figure we have $V_{B}>V_{E}$ so $V_{E B}<0$ and the transistor is in active mode.
Since we now know the transistor is active biased, we can take $V_{B E}=0.6 \mathrm{~V}$ and we immediately see that $V_{C}=+10 \mathrm{~V}$ and $V_{E}=0 \mathrm{~V}$.

$$
\begin{aligned}
V_{B} & =V_{E}+V_{B E} \\
& =0 V+0.6 \mathrm{~V} \\
& =0.6 \mathrm{~V} \\
I_{B} & =\frac{R_{B}}{5 V-V_{B}} \\
& =\frac{100 \mathrm{k} \Omega}{5 V-0.6 V} \\
& =44 \mu A \\
I_{C} & =\beta I_{B} \\
& =100 \cdot 44 \mu A \\
& =4.4 m A \\
I_{E} & =I_{C}+I_{B} \\
& =4.4 m A+44 \mu A \\
& =4.444 m A
\end{aligned}
$$

Grading Criteria:

I_{E}	$\in(4.04,4.545) \mathrm{mA}$	2 pts
I_{B}	$\in(40,45) \mu \mathrm{A}$	52 pts
I_{C}	$\in(4.0,4.5) \mathrm{mA}$	$2 p t s$
V_{E}	0 V	$1 p t s$
V_{B}	$\in(0.5 \mathrm{~V}, 0.8 \mathrm{~V})$	$2 p t s$
V_{C}	10 V	$1 p t s$
active?	$Y e s$	2.5 pts

Figure 4: Question 3
4. Use the band diagram above for the MOS structure for the question stated on the following page.

Figure 5: Question 4
A) (5 points) Find n far away from the junction region.

$$
\begin{aligned}
n & =n_{i} e^{\left(E_{F}-E_{i}\right) / k T} \\
& =10^{10} \mathrm{~cm}^{-3} e^{0.259 \mathrm{eV} / 0.0259 \mathrm{eV}} \\
& =10^{10} \mathrm{~cm}^{-3} \cdot 2.2 \times 10^{4} \\
& =2.2 \times 10^{14} \mathrm{~cm}^{-3}
\end{aligned}
$$

B) (5 points) Find p far away from the junction region.

$$
\begin{aligned}
p & =n_{i} e^{\left(E_{i}-E_{F}\right) / k T} \\
& =10^{10} \mathrm{~cm}^{-3} e^{-0.259 \mathrm{eV} / 0.0259 \mathrm{eV}} \\
& =10^{10} \mathrm{~cm}^{-3} \cdot 4.5 \times 10^{-5} \\
& =4.5 \times 10^{5} \mathrm{~cm}^{-3}
\end{aligned}
$$

C) (10 points) Find n inside the semiconductor for the region close to the oxide.

$$
\begin{aligned}
n & =n_{i} e^{\left(E_{i}-E_{F}\right) / k T} \\
& =10^{10} \mathrm{~cm}^{-3} e^{-0.259 \mathrm{eV} / 0.0259 \mathrm{eV}} \\
& =10^{10} \mathrm{~cm}^{-3} \cdot 4.5 \times 10^{-5} \\
& =4.5 \times 10^{5} \mathrm{~cm}^{-3}
\end{aligned}
$$

D) (5 points) Find p inside the semiconductor for the region close to the oxide.

$$
\begin{aligned}
p & =n_{i} e^{\left(E_{i}-E_{F}\right) / k T} \\
& =10^{10} \mathrm{~cm}^{-3} e^{-0.259 e V / 0.0259 e V} \\
& =10^{10} \mathrm{~cm}^{-3} \cdot 2.2 \times 10^{4} \\
& =2.2 \times 10^{14} \mathrm{~cm}^{-3}
\end{aligned}
$$

Grading Criteria:

- 1 pts for $n=n_{i} e^{\left(E_{F}-E_{i}\right) / k T}$ (parts A) and $p=n_{i} e^{\left(E_{i}-E_{F}\right) / k T}$ (parts B,D) or $n p=n_{i}{ }^{2}$ (parts B,D).
- 4 pts for $2.2 \times 10^{14} \mathrm{~cm}^{-3}$ (parts A,D) and $4.5 \times 10^{5} \mathrm{~cm}^{-3}$ (parts B)
- 2 pts for $n=n_{i} e^{\left(E_{F}-E_{i}\right) / k T}$ (parts C).
- 8 pts for $4.5 \times 10^{5} \mathrm{~cm}^{-3}$ (parts C)

