EECS170a Homework Solutions 3

November 7, 2005

1. Answer a-d for the figure shown below:

\qquad

Figure 1: Problem 1
a. Do equilibrium conditions prevail? How do you know?

- The system is in equilibrium since the Fermi energy is flat (i.e. $d E_{F} / d x=0$) and consequently there will be no net current flow $\left(J_{n e t}=0\right)$. Any drift currents ($J_{d r i f t}$) created by internal electric fields will be exactly canceled out by an equal but opposite diffusion current, $J_{\text {diffusion }}$.
b. Sketch the electrostatic potential (V) inside the semiconductor as a function of x .
- Electrons in the conduction band will exist at an energy E_{C} as defined by the energy band diagram and experience a corresponding potential difference of $V=-E_{C} / q$. Remember, V is a relative quantity and can be scaled by any reference voltage.

Figure 2: Problem 1b
c. Sketch the electric field, \mathbf{E}, inside the semiconductor as a function of x.

- The electric field \mathbf{E} is can be obtained from V by the relation $E=-d V / d x$. For $x \in(0, L / 2), \mathrm{V}$ has a negative slope $(d V / d x<0)$ so $E=-(-c)=+c$ where c is some positive constant. For $x \in(L / 2, L)$, V has a positive slope $(d v / d x>0)$ so $E=-(+c)=+c$.

Figure 3: Problem 1c
d. Roughly sketch n and p versus x .

- Electrons will accumulate at the lowest energy possible relative to the Fermi energy. Consequently, the electron density n will be highest near $x=0$ and $x=L$. Holes (i.e. electron vacancies) will accumulate at the highest possible energy relative to E_{F} which in this case is centered at $x=L / 2$. The magnitude of p is small relative to n because even at $x=L / 2$, where p is max, $E_{F}-E_{V}<E_{C}-E_{F}$.

Figure 4: Problem 1d
2. Answer a-d for the figure shown below:
a. Do equilibrium conditions prevail? How do you know?

- The system is in equilibrium since the Fermi energy is flat (i.e. $d E_{F} / d x=0$) and consequently, there will be no net current flow $\left(J_{n e t}=0\right)$. Any drift currents $\left(J_{d r i f t}\right)$ created by internal electric fields will be exactly canceled out by an equal but opposite diffusion current, $J_{\text {diffusion }}$.
b. Sketch the electrostatic potential (V) inside the semiconductor as a function of x .

Figure 5: Problem 2

- Electrons in the conduction band will exist at an energy E_{C} as defined by the energy band diagram and experience a corresponding potential difference of $V=-E_{C} / q$. Remember, V is a relative quantity and can be scaled by any reference voltage.

Figure 6: Problem 2b
c. Sketch the electric field, \mathbf{E}, inside the semiconductor as a function of x.

- The electric field \mathbf{E} is can be obtained from V by the relation $E=-d V / d x$. Around $x=L / 2$ we see that $d V / d x=+$ so $\mathbf{E}=-(+)=-$.

Figure 7: Problem 2c
d. Roughly sketch n and p versus x .

- Electrons will accumulate at the lowest energy possible relative to the Fermi energy. Consequently, the electron density n will be highest for $x \in(L / 2, L)$. Holes (i.e. electron vacancies) will accumulate at the highest possible energy relative to E_{F} which in this case $x \in(0, L / 2$. The magnitude of n is smaller compared to p because even at $x=L / 2$, where p is max, $E_{C}-E_{F}>E_{F}-E_{V}$.

Figure 8: Problem 2d

Figure 9: Problem 3
3. Answer a-d for the figure shown below:
a. Do equilibrium conditions prevail? How do you know?

- The system is in equilibrium since the Fermi energy is flat (i.e. $d E_{F} / d x=0$). There will be no net current flow $\left(J_{\text {net }}=0\right)$. Any drift currents $\left(J_{\text {drift }}\right)$ created by internal electric fields will be exactly canceled out by an equal but opposite diffusion current, $J_{\text {diffusion }}$.
b. Sketch the electrostatic potential (V) inside the semiconductor as a function of x .
- Electrons in the conduction band will exist at an energy E_{C} as defined by the energy band diagram and experience a corresponding potential difference of $V=-E_{C} / q$. Remember, V is a relative quantity and can be scaled by any reference voltage.

Figure 10: Problem 3b
c. Sketch the electric field, \mathbf{E}, inside the semiconductor as a function of x.

- The electric field \mathbf{E} is can be obtained from V by the relation $E=-d V / d x$.

Figure 11: Problem 3c
d. Roughly sketch n and p versus x.

- Electrons will accumulate at the lowest energy possible relative to the Fermi energy.

Figure 12: Problem 3d
4. For Si at 300 K , calculate $E_{C}-E_{F}$ and sketch E_{C}, E_{F}, E_{i}, and E_{V} as in figure 2.18 of the book for the following cases:
a. $N_{D}=10^{17} \mathrm{~cm}^{-3}, N_{A} \ll N_{D}$

- Starting with $n=N_{C} e^{-\left(E_{C}-E_{F}\right) / k T}$ and solving for $E_{C}-E_{F}$ we obtain

$$
E_{C}-E_{F}=-k T \ln \left(\frac{n}{N_{C}}\right)
$$

Since $N_{D} \gg N_{A}$ and $N_{D} \gg n_{i}$ we can approximate the electron concentration as $n \simeq N_{D}=$ $10^{17} \mathrm{~cm}^{-3}$. The value for $k T$ and N_{C} are given in the book: $k T=0.026 \mathrm{eV}$ and $N_{C}=(2.51 \times$
$\left.10^{19} / \mathrm{cm}^{-3}\right)\left(m^{*}{ }_{n} / m_{0}\right)^{3 / 2}(\mathrm{pg} 51)$ where $m^{*}{ }_{n} / m_{0}=1.18(\mathrm{pg} 34)$ for Si at $T=300 \mathrm{~K}$ giving us

$$
\begin{aligned}
N_{C} & =\left(2.51 \times 10^{19} / \mathrm{cm}^{-3}\right)\left(m_{n}^{*} / m_{0}\right)^{3 / 2} \\
& =\left(2.51 \times 10^{19} / \mathrm{cm}^{-3}\right)(1.18)^{3 / 2} \\
& =3.217 \times 10^{19} \mathrm{~cm}^{-3}
\end{aligned}
$$

$$
\begin{aligned}
E_{C}-E_{F} & =-k T \ln \left(\frac{n}{N_{C}}\right) \\
& =-(0.026 \mathrm{eV}) \ln \left(\frac{10^{17} \mathrm{~cm}^{-3}}{3.217 \times 10^{19} \mathrm{~cm}^{-3}}\right) \\
& =0.15 \mathrm{eV}
\end{aligned}
$$

Figure 13: Problem 4a
b. $N_{D}=10^{18} \mathrm{~cm}^{-3} ; N_{A} \ll N_{D}$

- Since $N_{D} \gg N_{A}$ and $N_{D} \gg n_{i}$ we can approximate the electron concentration as $n \simeq N_{D}=$ $10^{18} \mathrm{~cm}^{-3} . k T=0.026 \mathrm{eV}$ and $N_{C}=3.217 \times 10^{19} \mathrm{~cm}^{-3}$ giving us

$$
\begin{aligned}
E_{C}-E_{F} & =-k T \ln \left(\frac{n}{N_{C}}\right) \\
& =-(0.026 \mathrm{eV}) \ln \left(\frac{10^{18} \mathrm{~cm}^{-3}}{3.217 \times 10^{19} \mathrm{~cm}^{-3}}\right) \\
& =0.09 \mathrm{eV}
\end{aligned}
$$

c. $N_{A}=10^{19} \mathrm{~cm}^{-3} ; N_{A} \gg N_{D}$

- Starting with $p=N_{V} e^{-\left(E_{F}-E_{V}\right) / k T}$ and solving for $E_{F}-E_{V}$ we obtain

$$
E_{F}-E_{V}=-k T \ln \left(\frac{p}{N_{V}}\right)
$$

Figure 14: Problem 4b

Since $N_{D} \ll N_{A}$ and $N_{A} \gg n_{i}$ we can approximate the hole concentration as $p \simeq N_{D}=10^{19} \mathrm{~cm}^{-3}$. The value for $k T$ and N_{V} are given in the book: $k T=0.026 \mathrm{eV}$ and $N_{V}=\left(2.51 \times 10^{19} / \mathrm{cm}^{-3}\right)\left(m^{*}{ }_{n} / m_{0}\right)^{3 / 2}$ (pg51) where $m^{*}{ }_{p} / m_{0}=0.81(\mathrm{pg} 34)$ for Si at $T=300 \mathrm{~K}$ giving us

$$
\begin{aligned}
N_{V} & =\left(2.51 \times 10^{19} \mathrm{~cm}^{-3}\right)\left(m^{*}{ }_{p} / m_{0}\right)^{3 / 2} \\
& =\left(2.51 \times 10^{19} \mathrm{~cm}^{-3}\right)(0.81)^{3 / 2} \\
& =1.83 \times 10^{19} \mathrm{~cm}^{-3}
\end{aligned}
$$

$$
\begin{aligned}
E_{F}-E_{V} & =-k T \ln \left(\frac{p}{N_{V}}\right) \\
& =-(0.026 \mathrm{eV}) \ln \left(\frac{10^{19} \mathrm{~cm}^{-3}}{1.83 \times 10^{19} \mathrm{~cm}^{-3}}\right) \\
& =0.0157 \mathrm{eV}
\end{aligned}
$$

To solve $E_{C}-E_{F}$ we note that

$$
\begin{aligned}
E_{C}-E_{F} & =E_{G}-\left(E_{F}-E_{V}\right) \\
& =(1.12 \mathrm{eV})-(0.0157 \mathrm{eV}) \\
& =1.104 \mathrm{eV}
\end{aligned}
$$

d. $N_{A}=10^{15} \mathrm{~cm}^{-3} ; N_{A} \gg N_{D}$

- Since $N_{D} \ll N_{A}$ and $N_{A} \gg n_{i}$ we can approximate the hole concentration as $p \simeq N_{D}=10^{15} \mathrm{~cm}^{-3}$.

Figure 15: Problem 4c

The value for $k T$ and N_{V} are given in the book: $k T=0.026 \mathrm{eV}$ and $N_{V}=1.83 \times 10^{19} \mathrm{~cm}^{-3}$

$$
\begin{aligned}
E_{F}-E_{V} & =-k T \ln \left(\frac{p}{N_{V}}\right) \\
& =-(0.026 \mathrm{eV}) \ln \left(\frac{10^{15} \mathrm{~cm}^{-3}}{1.83 \times 10^{19} \mathrm{~cm}^{-3}}\right) \\
E_{F}-E_{V} & =0.255 \mathrm{eV}
\end{aligned}
$$

To solve $E_{C}-E_{F}$ we note that

$$
\begin{aligned}
E_{C}-E_{F} & =E_{G}-\left(E_{F}-E_{V}\right) \\
& =(1.12 \mathrm{eV})-(0.255 \mathrm{eV}) \\
& =0.8654 \mathrm{eV}
\end{aligned}
$$

Figure 16: Problem 4d
e. $N_{A}=N_{D}=10^{11} \mathrm{~cm}^{-3}$.

- In this case, $N_{A} \approx N_{D}$ so we need to use the more explicit equation to solve for either n or p . Solving
for n we get,

$$
\begin{aligned}
n & =\frac{N_{D}-N_{A}}{2}+\left[\left(\frac{N_{D}-N_{A}}{2}\right)^{2}+n_{i}{ }^{2}\right]^{1 / 2} \\
& =\frac{10^{11}-10^{11}}{2}+\left[\left(\frac{10^{11}-10^{11}}{2}\right)^{2}+10^{10^{2}}\right]^{1 / 2} \\
n & =10^{10} \mathrm{~cm}^{-3}
\end{aligned}
$$

And like the previous problems we can solve for $E_{C}-E_{F}$ using,

$$
\begin{aligned}
E_{C}-E_{F} & =-k T \ln \left(\frac{n}{N_{C}}\right) \\
& =-(0.026 \mathrm{eV}) \ln \left(\frac{10^{10} \mathrm{~cm}^{-3}}{3.217 \times 10^{19} \mathrm{~cm}^{-3}}\right) \\
& =0.55 \mathrm{eV}
\end{aligned}
$$

Figure 17: Problem 4e

