EECS170a Homework Solutions 4

November 30, 2005

1. In class we found

$$
\begin{equation*}
I=I_{0}\left(e^{q V_{\text {diode }} / k T}-1\right) \tag{1}
\end{equation*}
$$

Take $I_{0}=10^{-14} A$. For the circuit shown in Fig 1, fill in the following table:

Figure 1: Question 1

Solution:

Applying Kirchoff's Law to this circuit we obtain

$$
V_{A D}=R I_{A D}+V_{\text {diode }}+R I_{A D}
$$

and solving for $I_{A D}$ we get,

$$
\begin{equation*}
I_{A D}=\frac{V_{A D}-V_{\text {diode }}}{2 R} \tag{2}
\end{equation*}
$$

where $R=10 k \Omega$.

In order to solve for $I_{A D}$ we must obtain $V_{\text {diode }}$ which can be derived from (1) giving us

$$
\begin{aligned}
V_{\text {diode }} & =\frac{k T}{q} \ln \left(\frac{I_{A D}}{I_{0}}+1\right) \\
& =\frac{k T}{q} \ln \left(\frac{\left(V_{A D}-V_{\text {diode }}\right) / 2 R}{I_{0}}+1\right)
\end{aligned}
$$

Since we can not explicitly solve for $V_{\text {diode }}$ the above transcendental equation can be solved in an iterative process. To begin off lets take $V_{\text {diode }}$ in the \log as 0.6 V for the condition that $V_{A D}=1.0 \mathrm{~V}$,

$$
\begin{aligned}
V_{\text {diode }} & =0.026 \mathrm{~V} \ln \left(\frac{(1 V-0.6 \mathrm{~V}) /(2 \cdot 10 k \Omega)}{10^{-14} A}+1\right) \\
& =0.557 \mathrm{~V}
\end{aligned}
$$

For the second iterative step we can use the updated value of $V_{\text {diode }}$ as 0.557 V and further enhance our precision of $V_{\text {diode }}$. Now we get,

$$
\begin{aligned}
V_{\text {diode }} & =0.026 \mathrm{~V} \ln \left(\frac{(1 \mathrm{~V}-0.557 \mathrm{~V}) /(2 \cdot 10 k \Omega)}{10^{-14} A}+1\right) \\
& =0.559 \mathrm{~V}
\end{aligned}
$$

If a further iterative step does not change $V_{\text {diode }}$ appreciably then we can stop the iteration. In this case, a third iterative step results in the same value to the thousandths place so the final answer is $V_{\text {diode }}=0.559 \mathrm{~V}$ for $V_{A D}=1.0 V$. Now that we know $V_{\text {diode }}$ we can solve for the current $I_{A D}$ from (2) and obtain

$$
\begin{aligned}
I_{A D} & =\frac{V_{A D}-V_{\text {diode }}}{2 R} \\
& =\frac{1 V-0.559 V}{2 \cdot 10 k \Omega} \\
& =22 \mu \mathrm{~A}
\end{aligned}
$$

The final solution table is,

$V_{A D}$	$V_{\text {diode }}=V_{B C}$	$I_{A D}$
0.0	0	0
0.5	$0.4795 V$	$1.02 \mu A$
1.0	$0.559 V$	$22 \mu A$
1.5	$0.579 V$	$46 \mu A$
2.0	$0.590 V$	$70 \mu A$
2.5	$0.597 V$	$95 \mu A$
3.0	$0.603 V$	$120 \mu A$
3.5	$0.608 V$	$145 \mu A$
4.0	$0.612 V$	$169 \mu A$
4.5	$0.616 V$	$194 \mu A$
5.0	$0.619 V$	$219 \mu A$
5.5	$0.622 V$	$244 \mu A$
6.0	$0.624 V$	$269 \mu A$
6.5	$0.627 V$	$294 \mu A$
7.0	$0.629 V$	$319 \mu A$
7.5	$0.631 V$	$343 \mu A$
8.0	$0.633 V$	$368 \mu A$
8.5	$0.634 V$	$393 \mu A$
9.0	$0.636 V$	$418 \mu A$
9.5	$0.637 V$	$443 \mu A$
10	$0.639 V$	$468 \mu A$

One can confirm that theses solutions are correct by plugging them into the two equations to determine if the they both produce the same results.
2. For the circuit shown below, find $I_{B}, I_{E}, I_{C}, V_{C}, V_{B}, V_{E}, V_{B E}, V_{C E}, V_{B C}$ defined in Figure 10.2 of the text. Take $\beta=100$. Then $I_{C}=100 I_{B}$. The rest is just applications of Kirchoff's current and voltage laws. Is the transistor biased active mode?

Figure 2: Question 2

Solution:

The system of equations that describe this circuit are

$$
\begin{aligned}
& V_{C}-V_{1}=I_{C} R_{1} \\
& 0-V_{E}=I_{E} R_{3} \\
& V_{B}-V_{2}=I_{B} R_{2} \\
& V_{B}-V_{E}=V_{d} \\
& I_{C}=100 I_{B} \\
& I_{E}=I_{B}+I_{C}
\end{aligned}
$$

where $V_{1}=-9 V, V_{2}=-3.5 V, R_{1}=R_{2}=3 k \Omega, R_{3}=1 k \Omega$, and $V_{d}=0.6 V$. We can compactly express this system of equations as an array

$$
\left(\begin{array}{c}
V_{1} \\
0 \\
V_{2} \\
0 \\
V_{d} \\
0
\end{array}\right)=\left(\begin{array}{cccccc}
1 & 0 & 0 & -R_{1} & 0 & 0 \\
0 & -1 & 0 & 0 & -R_{3} & 0 \\
0 & 0 & 1 & 0 & 0 & -R_{2} \\
0 & 0 & 0 & 1 & -1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & -100
\end{array}\right)\left(\begin{array}{c}
V_{C} \\
V_{E} \\
V_{B} \\
I_{C} \\
I_{E} \\
I_{B}
\end{array}\right) .
$$

Using Matlab or Mathematica we can invert the $6 x 6$ matrix and obtain,

$$
\left(\begin{array}{c}
V_{C} \\
V_{E} \\
V_{B} \\
I_{C} \\
I_{E} \\
I_{B}
\end{array}\right)=\frac{1}{R_{2}+101 R_{3}}\left(\begin{array}{cccccc}
R_{2}+101 R_{3} & -100 R_{1} & -100 R_{1} & 100 R_{1} R_{3} & 100 R_{1} & R_{1} R_{2}+R_{1} R_{3} \\
0 & -R_{2} & 101 R_{3} & R_{2} R_{3} & -101 R_{3} & -R_{2} R_{3} \\
0 & -R_{2} & 101 R_{3} & R_{2} R_{3} & R_{2} & -R_{2} R_{3} \\
0 & -100 & -100 & 100 R_{3} & 100 & R_{2}+R_{3} \\
0 & -101 & -101 & -R_{2} & 101 & R_{2} \\
0 & -1 & -1 & R_{3} & 1 & -R_{3}
\end{array}\right)\left(\begin{array}{c}
V_{1} \\
0 \\
V_{2} \\
0 \\
V_{d} \\
0
\end{array}\right)
$$

$$
\left(\begin{array}{c}
V_{C} \\
V_{E} \\
V_{B} \\
I_{C} \\
I_{E} \\
I_{B}
\end{array}\right)=\frac{1}{R_{2}+101 R_{3}}\left(\begin{array}{c}
\left(R_{2}+101 R_{3}\right) V_{1}-100 R_{1} V_{2}+100 R_{1} V_{d} \\
101 R_{3} V_{2}-101 R_{3} V_{d} \\
101 R_{3} V_{2}+R_{2} V_{d} \\
100 V_{d}-100 V_{2} \\
101 V_{d}-101 V_{2} \\
V_{d}-V_{2}
\end{array}\right)=\left(\begin{array}{c}
2.83 V \\
-3.98 V \\
-3.38 V \\
3.94 m A \\
3.98 m A \\
39.4 \mu A
\end{array}\right) .
$$

Noting that $V_{B C}=V_{B}-V_{C}=-V_{C B}$ and that an active biased $p n p$ transistor is defined to have $V_{B C}>0$ (reverse biased) and $V_{B E}<0$ (forward biased) we obtain the values,

I_{E}	$3.98 m A$
I_{B}	$39.4 \mu A$
I_{C}	$3.94 m A$
V_{E}	$-3.98 V$
V_{B}	$-3.38 V$
V_{C}	$2.83 V$
$V_{B E}$	$0.6 V$
$V_{C E}$	$6.81 V$
$V_{B C}$	$-6.21 V$
Activebiased?	$N o$

Again, we can check that these equations are correct by substituting them back into the original equations.

