EECS170A Fall2006 Final Exam Solution

12/5/2006 4:00 to 6:00pm
Professor Peter Burke

PROBLEM ONE: (32 points)

A) D V has the same shape as the bands except it's upside-down.
B) E
C) A

Electric field $=\mathrm{dE} / \mathrm{dx}$, i.e. proportional to the slope of the bands.
D) C
E_{F} is constant.
E) B or D
$\mathrm{E}_{\mathrm{F}}-\mathrm{E}_{\mathrm{V}}<3 \mathrm{KT}$ near $\mathrm{x}=\mathrm{L}$.
$\mathrm{E}_{\mathrm{i}}-\mathrm{E}_{\mathrm{F}}=\mathrm{E}_{\mathrm{i}} / 2-\mathrm{E}_{\mathrm{i}} / 3=\mathrm{E}_{\mathrm{i}} / 6$
$\mathrm{p}=\mathrm{n}_{\mathrm{i}} \exp \left[\left(\mathrm{E}_{\mathrm{i}}-\mathrm{E}_{\mathrm{F}}\right) / \mathrm{KT}\right]$
$=10^{10} \mathrm{e}[1.12 /(6 \times 0.0259)]$
$=1.35 \times 10^{13} / \mathrm{cm}^{3}$
Since no calculators allowed, hence we accept answer D as correct answer, although B is the correct answer.
F) A
Under equilibrium, $\mathrm{J}_{\mathrm{N}}=0$
G) B
$\mathrm{J}_{\text {Pldrift }}=\mathrm{q} \mu_{\mathrm{p}} \mathrm{p} \varepsilon=\mathrm{q} \mu_{\mathrm{p}} \mathrm{px}(1 / \mathrm{q} \cdot \mathrm{dE} / \mathrm{dx})=\mathrm{E}_{\mathrm{G}} / \mathrm{qL}$
H) C
K.E. $=\mathrm{E}_{\mathrm{V}}(\mathrm{L})-\mathrm{E}_{\text {Hole }}=\mathrm{E}_{\mathrm{G}} / 3$

Grading criteria: 4 points for each correct answer.

PROBLEM TWO: (36 points)

Question	True	False
A		x
B	x	
C		x
D	x	
E	x	
F	x	x
G		
H	x	
I		

Grading criteria: 4 points for each correct answer.

PROBLEM THREE: (8 points)

The diode is forward biased.
It's because $p_{n}\left(x=x_{n}\right)>p_{n 0}=n_{i}^{2} / N_{D}$ and $n_{p}\left(x=-x_{p}\right)>n_{p 0}=n_{i}^{2} / N_{A}$. That is, there are accumulations of minority carriers at the edges of the depletion region.

Grading criteria: - 4 pts for stating "forward biased".

- No credits for answers just mentioning the energy band diagram.
- No credits for just mentioning current flow but not the carriers.
- No credits for just mentioning p_{p} and n_{n} only.
- 3 pts for mentioning increases in p_{n} and n_{p}, but did not mention at the edges of the depletion region.
- 4 pts for mentioning increases in p_{n} and n_{p} at the edges of the depletion region.
- 2 pts for only mentioning diffusions of electrons and holes across the depletion region to the other side of the junction.
- 2 pts for stating p_{n} increases, but n_{p} decreases.

PROBLEM FOUR: (24 points)

A)

2 pts for correct shape
1 pt for correct polarity
1 pt for $\phi=0$ for $x>a$
B)

2 pts for correct shape 1 pt for correct polarity 1 pt for $\varepsilon=0$ for $x>a$
C) A
EF is constant
D) B or C or A

Since no calculators allowed, hence we accept answer A and C as correct answers, although B is the correct answer.
E) C
F) B

Grading criteria: 4 points for each correct answer.

