EECS170A Fall2006 Midterm Exam Solution

11/7/2006 3:30 to 4:50pm
Professor Peter Burke

Note: For all questions, no credits will be given to any answers with units.

PROBLEM ONE: (20 points)

A p-n junction is doped at $\mathrm{N}_{\mathrm{A}}=10^{16} \mathrm{~cm}^{-3}$ and $\mathrm{N}_{\mathrm{D}}=10^{17} \mathrm{~cm}^{-3}$.
A) (5 points) Find the density of holes on the p-side.

Since $N_{A} \gg n_{i}$, the hole concentration, $p=N_{A}=10^{16} \mathrm{~cm}^{-3}$
(Acceptable range of p is $\left.(0.9-1.1) \times 10^{16} \mathrm{~cm}^{-3}\right)$
B) (5 points) Find the density of electrons on the p-side.

The electron concentration:

$$
n=\left(n_{i}\right)^{2} / p=\left(10^{10}\right)^{2} / 10^{16}=10^{4} \mathrm{~cm}^{-3}
$$

(Acceptable range of n is $(0.9-1.1) \times 10^{4} \mathrm{~cm}^{-3}$)
C) (5 points) Find the density of holes on the n-side.

Since $N_{D} \gg n_{i}$, the electron concentration, $n=N_{D}=10^{17} \mathrm{~cm}^{-3}$
The hole concentration:

$$
p=\left(n_{i}\right)^{2} / n=\left(10^{10}\right)^{2} / 10^{17}=10^{3} \mathrm{~cm}^{-3}
$$

(Acceptable range of p is $(0.9-1.1) \times 10^{3} \mathrm{~cm}^{-3}$)
D) (5 points) Find the density of electrons on the n-side.

Since $N_{D} \gg n_{i}$, the electron concentration, $n=N_{D}=10^{17} \mathrm{~cm}^{-3}$
(Acceptable range of n is $(0.9-1.1) \times 10^{17} \mathrm{~cm}^{-3}$)

PROBLEM TWO: (35 points)

An on-chip resistor is to be made of p-doped silicon, with dimensions $10 \mu \mathrm{~m}$ long, 1 $\mu \mathrm{m}$ wide, and $0.1 \mu \mathrm{~m}$ thick. The desired resistance is $10 \mathrm{~K} \Omega$. What doping level should be used?

$$
\begin{aligned}
\text { Given: } & \text { Length, } L=10 \mu \mathrm{~m}=10^{-5} \mathrm{~m} \\
& \text { Width, } W=1 \mu \mathrm{~m}=10^{-6} \mathrm{~m} \\
& \text { Thickness, } H=0.1 \mu \mathrm{~m}=10^{-7} \mathrm{~m} \\
& \text { Resistance, } R=10 \mathrm{~K} \Omega=10^{4} \Omega \\
R= & \rho L / A \quad(10 \text { pts for writing out this equation }) \\
\rho= & R . A / L=R . W \cdot H / L \\
= & \left(10^{4} \Omega\right) \times\left(10^{-6} \mathrm{~m}\right) \times\left(10^{-7} \mathrm{~m}\right) /\left(10^{-5} \mathrm{~m}\right) \\
& (5 \mathrm{pts} \text { for correctly substitute the numbers) } \\
= & 10^{-4} \Omega . m \\
= & 10^{-2} \Omega . c m \\
& (-10 p t s \text { for correct answer for } \rho \text {; } \\
& -10 p t s \text { for wrong answer due to the wrong substitution of numbers; } \\
& -0 \text { pts for wrong answer with correct substitution of number. })
\end{aligned}
$$

In order to find the doping level $\left(N_{A}\right)$, look at the graph from page 4 for p-type:

$$
N_{A}=10^{19} \mathrm{~cm}^{-3}
$$

(Acceptable range of N_{A} is $(0.8-1.0) \times 10^{19} \mathrm{~cm}^{-3}$)
(- 10pts for correct answer for N_{A};

- 10pts for wrong N_{A} but consistent with wrong ρ calculated above;
- 0 pts for wrong N_{A} with correct ρ calculated above;
- 5 pts for correct N_{A} but N_{D} was also written)

PROBLEM THREE: (45 points)

Assume equilibrium for all of problem three.

Consider a semiconductor that is n-doped with dopant density N_{D} that depends on position as follows:
$\mathrm{N}_{\mathrm{D}}(\mathrm{x})=\mathrm{N}_{\mathrm{D} 0}+\delta \mathrm{N}_{\mathrm{D}} \sin (\mathrm{kx})$,

Where $\mathrm{N}_{\mathrm{D} 0} \gg \mathrm{n}_{\mathrm{i}}$, and $\delta \mathrm{N}_{\mathrm{D}} \ll \mathrm{N}_{\mathrm{D} 0}$
$\mathrm{k}, \delta \mathrm{N}_{\mathrm{D}}$, and $\mathrm{N}_{\mathrm{D} 0}$ are constants.

Express your answers in terms of $\mathrm{k}, \delta \mathrm{N}_{\mathrm{D}}$, and $\mathrm{N}_{\mathrm{D} 0}$, and known constants and materials properties of silicon, such as $n_{i}, E_{G}, K T, q, D_{N}, \mu_{n}$, etc...
A) (10 points) Sketch the band diagram. (Qualitive.)
 constant E_{i} 5 pts for correct E_{C} and E_{V}

Alternatively,
With assumption: $\delta N_{D} \ll N_{D 0}$
 5 pts for correct E_{C} and E_{V}
B) (10 points) Find the electric field everywhere.

Electric field, $\quad \varepsilon=-d \mathrm{~V} / d x=1 / \mathrm{q} d \mathrm{E} / d x \quad$ (3 pts for writing this equation)
$\mathrm{E}_{\mathrm{F}}-\mathrm{E}_{\mathrm{i}}=\mathrm{K}_{\mathrm{B}} \mathrm{T} \ln \left(\mathrm{n} / \mathrm{n}_{\mathrm{i}}\right)$, where $\mathrm{K}_{\mathrm{B}}=$ Boltzman's constant
$d\left(\mathrm{E}_{\mathrm{F}}-\mathrm{E}_{\mathrm{i}}\right) / d x=-d \mathrm{E}_{\mathrm{i}} / d x=d\left(\mathrm{~K}_{\mathrm{B}} \mathrm{T} \ln \left(\mathrm{n} / \mathrm{n}_{\mathrm{i}}\right)\right) / d x$
(3 pts for writing this equation)
$=d\left(\mathrm{~K}_{\mathrm{B}} \mathrm{T} \ln \left[\left(\mathrm{N}_{\mathrm{D} 0}+\delta \mathrm{N}_{\mathrm{D}} \sin (\mathrm{kx})\right) / \mathrm{n}_{\mathrm{i}}\right)\right] / d x$
$=\mathrm{K}_{\mathrm{B}} \mathrm{T}\left(\mathrm{ni} / \mathrm{N}_{\mathrm{D}}(\mathrm{x})\right) d\left(\delta \mathrm{~N}_{\mathrm{D}} \sin (\mathrm{kx}) / \mathrm{n}_{\mathrm{i}}\right) / d x$
$=K_{B} T\left(n i / N_{D}(x)\right)\left(\delta N_{D} k \cos (k x) / n_{i}\right)$

$$
=\mathrm{K}_{\mathrm{B} . \mathrm{T}} . \delta \mathrm{N}_{\mathrm{D} .} \mathrm{k} \cos (\mathrm{kx}) / \mathrm{N}_{\mathrm{D}}(\mathrm{x})
$$

$\therefore \varepsilon(\mathrm{x})=1 / \mathrm{q} d \mathrm{E}_{\mathrm{i}} / d x=-(1 / \mathrm{q}) .\left(\mathrm{K}_{\mathrm{B}} . \mathrm{T} \cdot \delta \mathrm{N}_{\mathrm{D}} \mathrm{k} \cos (\mathrm{kx}) / \mathrm{N}_{\mathrm{D}}(\mathrm{x})\right)$
(4 pts for correct answer of ε, no credits for $\varepsilon=0$)
C) (10 points) Find the drift current density due to electrons everywhere.

$$
\begin{aligned}
& \mathrm{J}_{\mathrm{N} \mid \text { drift }}(\mathrm{x})=\mathrm{q} \cdot \mu_{\mathrm{n}} . \mathrm{n} . \varepsilon \quad \text { (2 pts for writing this equation) } \\
& =-\mu_{\mathrm{n}} \cdot \mathrm{~N}_{\mathrm{D}}(\mathrm{x}) \cdot\left(\mathrm{K}_{\mathrm{B}} \cdot \mathrm{~T} \cdot \delta \mathrm{~N}_{\mathrm{D}} \cdot \mathrm{k} \cdot \cos (\mathrm{kx}) / \mathrm{N}_{\mathrm{D}}(\mathrm{x})\right) \\
& =-\mu_{\mathrm{n}} . \mathrm{K}_{\mathrm{B}}, \mathrm{~T} \cdot \delta \mathrm{~N}_{\mathrm{D} .} \mathrm{k} \cdot \cos (\mathrm{kx}) \\
& \text { (- } 8 \text { pts for correct answer of } J_{N \mid \text { drift; }} \\
& \text { - 8pts for wrong answer of } J_{N \mid \text { drift }} \text { due to the wrong } \varepsilon \text { from Q3c } \\
& \text { - no credits for leaving answers as } \left.d E_{i} / d x \text {, or } d E_{C} d x \text { or } d E_{V} / d x \text { or } \varepsilon\right)
\end{aligned}
$$

D) (10 points) Find the diffusion current density due to electrons everywhere.

Under equilibrium,

$$
\begin{aligned}
& \begin{aligned}
\mathrm{J}_{\mathrm{N} \mid \text { diff }}(\mathrm{x}) & = \\
& -\mathrm{J}_{\text {drift } \mid \mathrm{n}} \\
& =\mu_{\mathrm{n}} \cdot \mathrm{~K}_{\mathrm{B}} . \mathrm{T} . \delta \mathrm{N}_{\mathrm{D} .} \mathrm{k} \cdot \cos (\mathrm{kx})
\end{aligned} \\
& \left(-10 \text { pts for correct } J_{N \mid \text { dif; }}\right. \\
& -10 \text { pts for wrong } J_{N \mid \text { diff }} \text { due to the wrong } J_{N \mid \text { dritt }} \text { from Q3d) }
\end{aligned}
$$

Or alternative method:

$$
\begin{aligned}
\mathrm{J}_{\mathrm{N} \mid \text { diff }}= & \mathrm{q}_{\mathrm{N}} \nabla \mathrm{n} \\
& (2 \text { pts for writing this equation }) \\
= & \mathrm{qD}_{\mathrm{N}} d\left(\mathrm{~N}_{\mathrm{D} 0}+\delta \mathrm{N}_{\mathrm{D}} \sin (\mathrm{kx})\right) / d x \\
& (3 \text { pts for writing this equation, need to express } \nabla \text { as } d / d x, \text { no credits } \\
& \text { for } \left.\nabla\left(N_{D 0}+\delta N_{D} \sin (k x)\right)\right) \\
= & \mathrm{qD}_{\mathrm{N}} \delta \mathrm{~N}_{\mathrm{D}} \mathrm{k} \cdot \cos (\mathrm{kx}) \\
& \left(5 \text { pts for correct } J_{\mathrm{N} \mid \text { diff }} \text { no credits for } J_{\mathrm{N} \mid \text { diff }}(x)=0\right)
\end{aligned}
$$

From Eisten's relationship:

$$
\begin{aligned}
& D_{N}=\mu_{\mathrm{n}} \cdot \mathrm{~K}_{\mathrm{B}} \cdot \mathrm{~T} / \mathrm{q} \\
& \therefore \mathrm{~J}_{\mathrm{N} \mid \text { diff }}(\mathrm{x})=\mu_{\mathrm{n}} \cdot \mathrm{~K}_{\mathrm{B}} \cdot \mathrm{~T} \cdot \delta \mathrm{~N}_{\mathrm{D}} \mathrm{k} \cdot \cos (\mathrm{kx})
\end{aligned}
$$

E) (5 points) Find the total current density everywhere.

In equilibrium, the total current density, $\mathrm{J}_{\text {total }}=0 . \quad$ (5 pts for correct $\mathrm{J}_{\text {total }}$)
Or alternative method:

$$
\mathrm{J}_{\mathrm{N}}=\mathrm{J}_{\mathrm{N} \mid \text { drift }}+\mathrm{J}_{\mathrm{N} \mid \text { diff }}
$$

$$
\begin{aligned}
& \quad=-\mu_{\mathrm{n}} . \mathrm{K}_{\mathrm{B}} . \mathrm{T} . \delta \mathrm{N}_{\mathrm{D} .} \mathrm{k} . \cos (\mathrm{kx})+\mu_{\mathrm{n}} . \mathrm{K}_{\mathrm{B}} . \mathrm{T} . \delta \mathrm{N}_{\mathrm{D}} . \mathrm{k} . \cos (\mathrm{kx}) \\
& \quad=0 \\
& \quad\left(-3 \text { pts for correct } J_{\text {total }}\right. \text {; } \\
& \text { - } 3 \text { pts for wrong } J_{\text {total }} \text { due to the wrong } J_{N \mid \text { drift }} \text { from Q3e and wrong } J_{N \mid \text { diff }} \\
& \text { from } \left.Q 3 \text { d, but no credits for leaving answers as } \operatorname{\nabla n} \text { or } \nabla N_{D}(x)\right)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \mathrm{J}_{\mathrm{P}}=\mathrm{J}_{\mathrm{P} \mid \text { drift }}+\mathrm{J}_{\mathrm{P} \mid \text { diff }}=0 \\
& \therefore \mathrm{~J}_{\text {total }}=\mathrm{J}_{\mathrm{N}}+\mathrm{J}_{\mathrm{P}}=0
\end{aligned}
$$

