EECS170A Fall 2007 Final Exam
12/11/2007 4 to 6 pm
Professor Peter Burke

1	2	3	4	Total	
	$/ 25$		$/ 25$		$/ 25$
	$/ 25$	$/ 100$			

THREE PROBLEMS TOTAL.

DO NOT BEGIN THE EXAM UNTIL YOU ARE TOLD TO DO SO.

EECS170A Fall 2007 Final Exam
12/11/2007 4 to 6 pm
Professor Peter Burke

Name: \qquad
ID no.: \qquad

PROBLEM ONE:

Short answer.
A) An average hole drift velocity of $10^{3} \mathrm{~cm} / \mathrm{sec}$ results when 2 V is applied across a 1 -cm-long semiconductor bar. What is the hole mobility inside the bar?

$$
\begin{aligned}
& \mathcal{E}=\text { electric field }=2 \mathrm{~V} / 1 \mathrm{~cm}=2 \mathrm{~V} / \mathrm{cm} \\
& V_{d}=\mu_{p} \mathcal{E} \Rightarrow \mu_{p}=V_{d} / \mathcal{E}=10^{3} / 2=5 \times 10^{2} \mathrm{~cm}^{2} / \mathrm{V} \cdot \mathrm{sec}
\end{aligned}
$$

B) Name the two dominant carrier scattering mechanisms in nondegenerately doped semiconductors of device quality.
(1) Lattice scattering: collisions with thermally agitated lattice atoms. (3pts)
(2) Ionized impurity scattering. (3pts)
C) For a given semiconductor the carrier mobilities in intrinsic material are (choose one: higher than, lower than, the same as) those in heavily doped material.
Briefly explain why the mobilities in intrinsic material are (chosen answer) those in heavily doped material.

The carrier motilities in intrinsic material are higher than those in heavily doped material, because there are high numbers of ionized impurities in the heavily doped materials causing more ionized impurity scattering, hence results in systematical decrease in the carrier motilities.
(2pts for stating lower; 5pts for correct explanation))
D) The electron mobility in a silicon sample is determined to be $1300 \mathrm{~cm}^{2} / \mathrm{V}$-sec at room temperature. What is the electron diffusion coefficient?
$\mu_{n}=1300 \mathrm{~cm}^{2} / V-\mathrm{sec}$
Using Einstein relationship:
$D_{n}=\mu_{n .} \cdot(K T / q)=1300 \times 0.026=33.8 \mathrm{~cm}^{2} / \mathrm{sec}$
(3pts for correct equation,
5 pts for correct equation and correct substitution
6 pts for correct equation, correct substitution, and correct answer)

EECS170A Fall 2007 Final Exam
12/11/2007 4 to 6 pm
Professor Peter Burke

Name: \qquad
ID no.: \qquad

PROBLEM TWO:

A) For the diode below, note that $\mathrm{E}_{\mathrm{v}}(-\infty)=\mathrm{E}_{\mathrm{C}}(+\infty)$. What is the magnitude of the reverse bias voltage V_{A} applied to the diode? Explain how you arrived at your answer.

Explanation:

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{Fp}}-\mathrm{E}_{\mathrm{Fn}}=\mathrm{qV}_{\mathrm{A}}(2 p t s) \\
& \mathrm{E}_{\mathrm{Fp}}-\mathrm{E}_{\mathrm{Fn}}=\left(\mathrm{E}_{\mathrm{Fp}}-\mathrm{E}_{\mathrm{i}}\right)-\left(\mathrm{E}_{\mathrm{Fn}}-\mathrm{E}_{\mathrm{i}}\right)=\left(-\mathrm{E}_{\mathrm{G}} / 4\right)-\left(\mathrm{E}_{\mathrm{G}} / 4\right)=-\mathrm{E}_{\mathrm{G}} / 2=\mathrm{qV}_{\mathrm{A}}(2 p t s)
\end{aligned}
$$

$$
\therefore \mathrm{V}_{\mathrm{A}}=-\mathrm{E}_{\mathrm{G}} / 2 \mathrm{q} \quad(\mathrm{~V}) \quad \text { (lpts) }
$$

B) Determine V_{bi}, the built-in voltage.

Since $\mathrm{E}_{\mathrm{V}}(-\infty)=\mathrm{E}_{\mathrm{C}}(+\infty), \mathrm{q}\left(\mathrm{V}_{\mathrm{bi}}-\mathrm{V}_{\mathrm{A}}\right)=\mathrm{E}_{\mathrm{G}} \quad(2 p t s)$

$$
\begin{aligned}
\therefore \mathrm{V}_{\mathrm{bi}}=\left(\mathrm{E}_{\mathrm{G}} / \mathrm{q}\right)+\mathrm{V}_{\mathrm{A}}=\mathrm{E}_{\mathrm{G}} / 2 \mathrm{q} \quad(\mathrm{~V}) \quad & \text { (1pt for } E_{G} / 2 \text {, i.e.. without the " } q \text { "; } \\
& \text { 2pts for correct answer) }
\end{aligned}
$$

C) Complete the tables below by indicating the polarity (+ or -) of the input and output voltages associated with each of the four biasing modes.
(a) $p n p$

Mode	V_{EB}	V_{CB}
Active	+	-
Inverted	-	+
Saturation	+	+
Cutoff	-	-

(b) $n p n$

Mode	V_{BE}	V_{BC}
Active	+	-
Inverted	-	+
Saturation	+	+
Cutoff	-	-

(1pts for each correct polarity)

EECS170A Fall 2007 Final Exam
12/11/2007 4 to 6 pm
Name: \qquad
ID no.: \qquad

PROBLEM THREE:

Suppose a battery $V_{\mathrm{B}} \geq 0$ is connected between the gate and drain of an ideal n channel MOSFET as pictured in Fig. P17.9. Using the square-law results,
(a) Sketch I_{D} versus $V_{\mathrm{D}}\left(V_{\mathrm{D}} \geq 0\right)$ if $V_{\mathrm{B}}=V_{\mathrm{T}} / 2$;
(b) Sketch I_{D} versus $V_{\mathrm{D}}\left(V_{\mathrm{D}} \geq 0\right)$ if $V_{\mathrm{B}}=2 V_{\mathrm{T}}$.

Figure P17.9
(a)

$$
\begin{aligned}
& V_{B}=V_{T} / 2=V_{G}-V_{D} \quad \Rightarrow \quad V_{G}=\left(V_{T} / 2\right)+V_{D} \\
& \text { For } 0 \leq \mathrm{V}_{\mathrm{G}}<\mathrm{V}_{\mathrm{T}} \text {, i.e., }\left(-\mathrm{V}_{\mathrm{T}} / 20\right) \leq \mathrm{V}_{\mathrm{D}}<\left(\mathrm{V}_{\mathrm{T}} / 2\right) \text {, } \\
& =>\text { The nmos is in the cutoff region, } I_{D}=0 \text {. } \\
& \text { For } \mathrm{V}_{\mathrm{D}} \geq\left(\mathrm{V}_{\mathrm{T}} / 2\right), \mathrm{V}_{\mathrm{GD}}=\left(\mathrm{V}_{\mathrm{T}} / 2\right)<\mathrm{V}_{\mathrm{T}} \\
& =>\text { The nmos is in the saturation region. } \\
& \Rightarrow I_{D} \propto\left(V_{G S}-V_{T}\right)^{2}=\left[\left(V_{T} / 2\right)+V_{D}-V_{T}\right]^{2}=\left[V_{D}-\left(V_{T} / 2\right)\right]^{2}
\end{aligned}
$$

(-5pts for graph showing current saturation
$-2 p t s$ for not showing current $=0$ when $V_{D}<V_{T}$,
-10pts for other incorrect plots)

EECS170A Fall 2007 Final Exam
12/11/2007 4 to 6 pm
Professor Peter Burke

Name:
ID no.:
\qquad
\qquad
(b) $\quad V_{B}=2 V_{T}=V_{G}-V_{D} \quad \Rightarrow \quad V_{G}=2 V_{T}+V_{D}$

For $0 \leq \mathrm{V}_{\mathrm{G}}<\mathrm{V}_{\mathrm{T}}$, i.e., $\mathrm{V}_{\mathrm{D}}<\left(-\mathrm{V}_{\mathrm{T}}\right)$, the nmos is in the cutoff region, $\mathrm{I}_{\mathrm{D}}=0$.
For $\mathrm{V}_{\mathrm{D}} \geq\left(-\mathrm{V}_{\mathrm{T}} / 2\right), \mathrm{V}_{\mathrm{GD}}=\left(2 \mathrm{~V}_{\mathrm{T}}\right)>\mathrm{V}_{\mathrm{T}}$, the nmos is in the triode region.
$I D \propto\left[\left(V_{G S}-V_{T}\right) V_{D S}-V_{D S}{ }^{2} / 2\right]$
$=\left[\left(2 V_{T}+V_{D}-V_{T}\right) V_{D}-V_{D}^{2} / 2\right]$
$=\left[V_{T} V_{D}+V_{D}^{2}-V_{D}^{2} / 2\right]$
$=\left[V_{T} V_{D}+V_{D}^{2} / 2\right]$

(-5pts for graph showing current saturation
$-2 p$ ts for not showing current $=0$ when $V_{D}=0$,
-10pts for other incorrect plots)

EECS170A Fall 2007 Final Exam
12/11/2007 4 to 6 pm
Professor Peter Burke

Name: \qquad
ID no.: \qquad

PROBLEM FOUR:

The figure above is the amplifier built for the EECS170LA.
A) Assume the transistor is a MOSFET. Using the square-law theory, find the small signal gain in terms of $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{\mathrm{B}}, \mathrm{R}_{\mathrm{C}}$, and the transistor properties: Z (width), μ (effective mobility), $\mathrm{V}_{\mathrm{G}}, \mathrm{V}_{\mathrm{T}}$, C_{o}. (Assume R_{L} is very large). Ignore C_{GS}. Do this by putting in the hybrid π model for the MOSFET and the transconductance g_{m} from the square law theory in terms of the transistor gate width Z , mobility $\mu, \mathrm{C}_{\mathrm{o}}, \mathrm{V}_{\mathrm{G}}$, and V_{T}.

Small signal model:

$\mathrm{V}_{\mathrm{gs}}=\left[\left(\mathrm{R}_{1} \| \mathrm{R}_{2}\right) /\left(\left(\mathrm{R}_{1} \| \mathrm{R}_{2}\right)+\mathrm{R}_{\mathrm{B}}\right)\right] . \mathrm{V}_{\text {in }}$
(5 pts for correct $V_{g s}$ expression)
$V_{\text {out }}=-g_{m} V_{g s}\left(R_{L} \| R_{C}\right)$
(5 pts for correct $V_{\text {out }}$ expression)
\qquad
12/11/2007 4 to 6 pm
ID no.: \qquad
Professor Peter Burke

Gain $=V_{\text {out }} / V_{\text {in }}=-g_{m}\left(R_{L} \| R_{C}\right)\left[\left(R_{1} \| R_{2}\right) /\left(\left(R_{1} \| R_{2}\right)+R_{B}\right)\right]$
$\mathrm{g}_{\mathrm{m}}=\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}(\mathrm{Z} / \mathrm{L})\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)=\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}(\mathrm{Z} / \mathrm{L})\left(\mathrm{V}_{\mathrm{G}}-\mathrm{V}_{\mathrm{T}}\right)$
(2 pts for correct g_{m} expression)

Assume R_{L} is very large:
\therefore gain $=-\left[\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}(\mathrm{Z} / \mathrm{L})\left(\mathrm{V}_{\mathrm{G}}-\mathrm{V}_{\mathrm{T}}\right)\right]\left(\mathrm{R}_{\mathrm{C}}\right)\left[\left(\mathrm{R}_{1} \| \mathrm{R}_{2}\right) /\left(\left(\mathrm{R}_{1} \| \mathrm{R}_{2}\right)+\mathrm{R}_{\mathrm{B}}\right)\right]$
(2 pts for correct magnitude of the gain, but without the negative sign;
3 pts for correct gain)

PROBLEM FOUR(CONTINUED):

B) Using the results from part A , assuming:
$\mathrm{R}_{1}=\mathrm{R}_{2}=1 \mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{B}}=\mathrm{R}_{\mathrm{C}}=100 \Omega$
$\mu=1000 \mathrm{~cm}^{2} / V-\mathrm{sec}$
$\mathrm{L}=1 \mu \mathrm{~m}$
$\mathrm{Cp}=10^{-2} \mathrm{~F} / \mathrm{m}^{2}$
Find the value of the transistor width Z that is required to give a voltage gain of 10 for this circuit.

$$
\begin{aligned}
& \mu=1000 \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{sec}=0.1 \mathrm{~m}^{2} / \mathrm{V} \text {-sec } \\
& \mathrm{Vgs}=\left[\mathrm{R}_{2} /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)\right] \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\
& \text { |gainl }=\left[\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}(\mathrm{Z} / \mathrm{L})\left(\mathrm{V}_{\mathrm{G}}-\mathrm{V}_{\mathrm{T}}\right)\right]\left(\mathrm{R}_{\mathrm{C}}\right)\left[\left(\mathrm{R}_{1} \| \mathrm{R}_{2}\right) /\left(\left(\mathrm{R}_{1} \| \mathrm{R}_{2}\right)+\mathrm{R}_{\mathrm{B}}\right)\right] \\
& 10=\left[0.1 \times 10^{-2}\left(\mathrm{Z} / 10^{-6}\right)\left(5-\mathrm{V}_{\mathrm{T}}\right)\right](100)[(1 \mathrm{k} \Omega \| 1 \mathrm{k} \Omega) /((1 \mathrm{k} \Omega \| 1 \mathrm{k} \Omega)+100)] \\
& 10=\left[10^{3} \mathrm{Z}\left(5-\mathrm{V}_{\mathrm{T}}\right)\right](100)[500 /((500+100)] \\
& 1.2 \times 10^{-4}=\mathrm{Z}\left(5-\mathrm{V}_{\mathrm{T}}\right) \\
& \therefore \mathrm{Z}=\left(1.2 \times 10^{-4}\right) /\left(5-\mathrm{V}_{\mathrm{T}}\right)
\end{aligned}
$$

EECS170A Fall 2007 Final Exam	Name:
$12 / 11 / 20074$ to 6 pm	ID no.:
Professor Peter Burke	

(Use the gain expression from part a):
3pts for finding Vgs
8pts for finding Vgs and correct substitution, but wrong answer
10pts for correct answer
If no expression was found in part a), but show the steps for how to solve this question, 3 pts)

