EECS 170A Section B
 Homework Solution \#1

Fall 2007 - Prof. Burke

1) In a modern integrated circuit, there are 10^{8} transistors. They fit onto one chip. The chip size is typically about $1 \mathrm{~cm} \times 1 \mathrm{~cm}$. Calculate the area that each transistor occupies. If the area is a square geometry, calculate the length of one side of the square?
(25 pts) \quad Chip area $=1 \mathrm{~cm} \times 1 \mathrm{~cm}=1 \mathrm{~cm}^{2}$
No. Of transistors $=10^{8}$
\therefore Area each transistor occupied $=1 \div 10^{8}=10^{-8} \mathrm{~cm}^{2}$
(Any incorrect answer, -5pt)
(25 pts) Length of one side $=10^{-4} \mathrm{~cm}$
2) A current of 10 A flows through a copper wire. It's diameter is 0.25 ".
a. What is the current density in the wire?
b. How many electrons per second flow past a plane perpendicular to the wire?
(25 pts) a. Diameter $=0.25^{\prime \prime}=0.635 \mathrm{~cm} \quad$ (Incorrect unit conversion, -5 pt)
Cross-sectional area of wire, A
$=\left(\pi D^{2}\right) / 4=\left(\pi \times(0.635 \mathrm{~cm})^{2}\right) / 4=3.17 \times 10^{-1} \mathrm{~cm}^{2}$
Current Density $=J$

$$
=I / A
$$

$$
=(10 \mathrm{~A}) /\left(3.17 \times 10^{-1} \mathrm{~cm}^{2}\right)
$$

$$
\left.=31.6 \mathrm{~A} / \mathrm{cm}^{2} \quad \text { (Any incorrect answer, }-5 p t\right)
$$

(Acceptable range: $31-32 \mathrm{~A} / \mathrm{cm}^{2}$)
(25 pts) b. \quad No. of electrons per second $=I / q$

$$
\begin{aligned}
& =(10 \mathrm{~A}) /\left(1.6 \times 10^{-19} \mathrm{C}\right) \\
& =6.25 \times 10^{19} \text { electrons } / \text { second }
\end{aligned}
$$

(Any incorrect answer, -5pt)
(Acceptable range: $6 \times 10^{19}-6.5 \times 10^{19}$ electrons/ second)

