Name:

Student ID #:

EECS 170A Section B Homework #2

HW will be collected in DISCUSSION ONLY. Do not turn your HW in anywhere else, or it will not be accepted.

DUE: 12:50 PM Wednesday, October 17, 2007.

Please *staple* this sheet to the front of your homework.

1a	1b	2a	2b	2c	2d	3a	3b	Total
/10	/10	/15	/15	/15	/15	/10	/10	/100

- 1) A thin metal film resistor as shown in the figure below has a resistance of 100 k Ω . It is 1 mm long, 10 μ m wide, and 1 µm thick.
 - Calculate the resistivity (ρ), in units of Ω -m. a.
 - Now express the resistivity in units of $\mu\Omega$ -cm, a more common unit. b.

- 2) For Si at 300 K, do the following: (Use cm^{-3} as your units.)
 - a. $N_D = 10^{19} \text{ cm}^{-3}$; $N_A \ll N_D$. Calculate the equilibrium electron concentration (n) and hole concentration (p). b. $N_D = 2 \ 10^{10} \text{ cm}^{-3}$; $N_A \ll N_D$. Calculate the equilibrium electron concentration (n) and hole concentration (p). c. $N_A = 2 \ 10^{19} \text{ cm}^{-3}$; $N_D \ll N_A$. Calculate the equilibrium electron concentration (n) and hole concentration (p). d. $N_A = 3 \ 10^{10} \text{ cm}^{-3}$; $N_D \ll N_A$. Calculate the equilibrium electron concentration (n) and hole concentration (p).
- 3) For the silicon sample at T= 300 K shown below, given $N_A = 10^{16} \text{ cm}^{-3}$, $N_D < < N_A$,
 - a. Find the resistivity ρ of the Si to within 10%. For units, use Ω -cm. (You may use figure 3.8 from the text.)
 - b. Calculate the resistance R_{AB} in units of Ω , for the following geometry:

