EECS 170A Section B
 Homework Solution \#3

1) Answer a-d for the figure shown below:

a. Do equilibrium conditions prevail? How do you know?
(2 pts) Yes, the system is in equilibrium.
($\mathbf{3}$ pts) \quad The Fermi energy is constant (i.e. $d E_{F} / d x=0$). This means that any drift currents $\left(J_{\text {drifit }}\right)$ due to the internal electric fields will cancel out an equal but opposite diffusion current $\left(J_{\text {diffusion }}\right)$. Consequently, the net current flow equals to zero, hence, the system is in equilibrium.
b. Sketch the electrostatic potential (V) inside the semiconductor as a function of x .
(5 pts)

The electrostatic potential can be expressed as $V=-E_{C} / q$. Remember that V is a relative quantity and can be scaled by any reference voltage.
c. Sketch the electric field (E) inside the semiconductor as a function of x

The electric field (E) can be derived from the electrostatic potential (V) by $E=-d V / d x=1 / q\left(d E_{C} d x\right)$.
d. Roughly sketch n and p versus x .

(5 pts)

In equilibrium,
$n=N_{C} e^{-\left(E_{C}-E_{f}\right) / K T}=N_{i} e^{\left(E_{f}-E_{i}\right) / K T}$
Electrons accumulate at the lowest energy possible relative to the Fermi energy. Hence, the electron density (n) will be highest near $x=0$ and $x=L$.

In equilibrium,

$$
p=N_{V} e^{-\left(E_{f}-E_{V}\right) / K T}=N_{i} e^{\left(E_{i}-E_{V}\right) / K T}
$$

When the Fermi energy for the intrinsic semiconductor $\left(E_{i}\right)$ becomes greater than the Fermi level $\left(E_{f}\right)$, then there is holes accumulation. The magnitude of p peaks at $x=L / 2$.
2) Answer a-d for the figure shown below:

a. Do equilibrium conditions prevail? How do you know?
(2 pts) Yes, the system is in equilibrium.
(3 pts) The Fermi energy is constant (i.e. $d E_{F} / d x=0$). This means that any drift currents ($J_{\text {driff }}$) due to the internal electric fields will cancel out an equal but opposite diffusion current ($J_{\text {diffusion }}$). Consequently, the net current flow equals to zero, hence, the system is in equilibrium.
b. Sketch the electrostatic potential (V) inside the semiconductor as a function of x .

The electrostatic potential can be expressed as $V=-E_{c} / q$. Center of the graph should be at $x=L / 2$.
c. Sketch the electric field (E) inside the semiconductor as a function of x
(5 pts)

d. Roughly sketch n and p versus x.

(5 pts for n and 5pts for p)

The electric field (E) can be derived from the electrostatic potential (V) by $E=-d V / d x$.

When the Fermi energy for the intrinsic semiconductor (E_{i}) equals to the Fermi level $\left(E_{f}\right)$, then the electron and hole concentrations equal to the intrinsic concentration $\left(n_{i}\right)$.
3) Answer a-d for the figure shown below:

a. Do equilibrium conditions prevail? How do you know?
(2 pts) Yes, the system is in equilibrium.
(3 pts) The Fermi energy is constant (i.e. $d E_{F} / d x=0$). This means that any drift currents ($J_{\text {drift }}$) due to the internal electric fields will cancel out an equal but opposite diffusion current ($J_{\text {diffusion }}$). Consequently, the net current flow equals to zero, hence, the system is in equilibrium.
b. Sketch the electrostatic potential (V) inside the semiconductor as a function of x .

The electrostatic potential can be expressed as $V=-E_{c} / q$. Center of the graph should be at $x=L / 3$ and 2L/3.
c. Sketch the electric field (E) inside the semiconductor as a function of x
(5 pts)

d. Roughly sketch n and p versus x.

(5 pts for n and $5 p t s$ for p)

When the Fermi energy for the intrinsic semiconductor (E_{i}) equals to the Fermi level $\left(E_{f}\right)$, then the electron and hole concentrations equal to the intrinsic concentration $\left(n_{i}\right)$.
4) For Si at 300 K , calculate $\mathrm{E}_{\mathrm{C}}-\mathrm{E}_{\mathrm{F}}$ and sketch $\mathrm{E}_{\mathrm{C}}, \mathrm{E}_{\mathrm{F}}, \mathrm{E}_{\mathrm{i}}$, and E_{V} as in figure 2.18 of the book for the following cases:
a. $\mathrm{N}_{\mathrm{D}}=10^{18} \mathrm{~cm}^{-3} ; \mathrm{N}_{\mathrm{A}}=10^{12} \mathrm{~cm}^{-3}$.
(3 pts) Since $N_{D} \gg N_{A}$ and $N_{D} \gg n_{i}$,
$\therefore n \approx N_{D}=10^{18} \mathrm{~cm}^{-3}$
At $300 \mathrm{~K}, N_{C, V}=2.510 \times 10^{19} \times\left(m_{n, p} * / m_{0} *\right)^{3 / 2}$
From Table 2.1, for Si, $\quad\left(m_{n}{ }^{*} / m_{0}{ }^{*}\right)=1.18$;

$$
\left(m_{p} * / m_{0} *\right)=0.81
$$

$N_{C}=2.510 \times 10^{19} \times(1.18)^{3 / 2}=3.217 \times 10^{19} \mathrm{~cm}^{-3}$
$N_{V}=2.510 \times 10^{19} \times(0.81)^{3 / 2}=1.83 \times 10^{19} \mathrm{~cm}^{-3}$

$$
\begin{aligned}
E_{C}-E_{F} & =K T \ln \left(N_{C} / n\right) \\
& =0.0259 \times \ln \left(3.217 \times 10^{19} / 10^{18}\right)=0.09 \mathrm{eV}
\end{aligned}
$$

$E_{C}-E_{i}=K T \ln \left(N_{C} / n_{i}\right)=0.0259 \times \ln \left(3.217 \times 10^{19} / 10^{10}\right)=0.57 \mathrm{eV}$
$E_{i}-E_{V}=K T \ln \left(N_{V} / n_{i}\right)=0.0259 \times \ln \left(1.83 \times 10^{19} / 10^{10}\right)=0.55 \mathrm{eV}$
Or another approach:
$E_{F}-E_{i}=K T \ln \left(n / n_{i}\right)=0.0259 x \ln \left(10^{18} / 10^{10}\right)=0.477 \mathrm{eV}$
$E c-E_{F}=\left(E_{C}-E_{i}\right)-\left(E_{F}-E_{i}\right)=0.57-0.477=0.093 \mathrm{eV}$
Or another approach:
$E_{C}-E_{i} \approx E g / 2=1.12 / 2=0.56 \mathrm{eV}$
$E c-E_{F}=\left(E_{C}-E_{i}\right)-\left(E_{F}-E_{i}\right)=0.56-0.477=0.083 \mathrm{eV}$
Acceptable $\left(E c-E_{F}\right)$ range $=0.08 \sim 0.095 \mathrm{eV}$
b. $\mathrm{N}_{\mathrm{A}}=10^{18} \mathrm{~cm}^{-3} ; \mathrm{N}_{\mathrm{D}}=10^{12} \mathrm{~cm}^{-3}$.
(3 pts) $N_{A} \gg N_{D}$ and $N_{A} \gg n_{i}$

$$
\begin{aligned}
& \therefore p \approx N_{A}=10^{18} \mathrm{~cm}^{-3} \\
&\left.\begin{array}{rl}
E_{F}-E_{V} & =
\end{array}\right) K \ln \left(N_{V} / p\right) \\
&=0.0259 \times \ln \left(1.83 \times 10^{19} / 10^{18}\right) \\
&=0.075 \mathrm{eV} \\
& E_{C}-E_{F}=\left(E_{C}-E_{V}\right)-\left(E_{F}-E_{V}\right) \\
&=1.12 \mathrm{eV}-0.075 \mathrm{eV} \\
&=1.045 \mathrm{eV}
\end{aligned}
$$

(2 pts for the sketch)

Acceptable $\left(E c-E_{F}\right)$ range $=1.03 \sim 1.05 \mathrm{eV}$
c. $\mathrm{N}_{\mathrm{A}}=10^{18} \mathrm{~cm}^{-3} ; \mathrm{N}_{\mathrm{D}}=10^{18} \mathrm{~cm}^{-3}$.
(2 pts for the sketch)

From Table 2.1, for Si, $\left(m_{n}{ }^{*} / m_{0}{ }^{*}\right)=1.18 ;$
$N_{C}=2.510 \times 10^{19} \times(1.18)^{3 / 2}=3.217 \times 10^{19} \mathrm{~cm}^{-3}$
$E_{C}-E_{i}=E_{C}-E_{F}=K T \ln \left(N_{C} / n_{i}\right)=0.0259 \times \ln \left(3.217 \times 10^{19} / 10^{10}\right)=0.57 \mathrm{eV}$
Or another approach:
$E_{C}-E_{i}=E_{C}-E_{F} \approx E g / 2=1.12 / 2=0.56 \mathrm{eV}$
Acceptable $\left(E c-E_{F}\right)$ range $=0.56 \sim 0.57 \mathrm{eV}$
d. $\mathrm{N}_{\mathrm{A}}=10^{12} \mathrm{~cm}^{-3} ; \mathrm{N}_{\mathrm{D}}=10^{12} \mathrm{~cm}^{-3}$.

(2 pts for the sketch)

(3 pts) $N_{A}-N_{D}=0$

$$
n=p=n_{i}=10^{10} \mathrm{~cm}^{-3}
$$

$$
\therefore E_{F}=E_{i}
$$

At $300 \mathrm{~K}, N_{C}=2.510 \times 10^{19} \times\left(m_{n} * / m_{0} *\right)^{3 / 2}$
From Table 2.1, for Si, $\quad\left(m_{n}{ }^{*} / m_{0}{ }^{*}\right)=1.18$;

$N_{C}=2.510 \times 10^{19} \times(1.18)^{3 / 2}=3.217 \times 10^{19} \mathrm{~cm}^{-3}$
$E_{C}-E_{i}=E_{C}-E_{F}=K T \ln \left(N_{C} / n_{i}\right)=0.0259 \times \ln \left(3.217 \times 10^{19} / 10^{10}\right)=0.57 \mathrm{eV}$
Or another approach:
$E_{C}-E_{i}=E_{C}-E_{F} \approx E g / 2=1.12 / 2=0.56 \mathrm{eV}$
Acceptable $\left(E c-E_{F}\right)$ range $=0.56 \sim 0.57 \mathrm{eV}$
e. $\mathrm{N}_{\mathrm{A}}=10^{18} \mathrm{~cm}^{-3} ; \mathrm{N}_{\mathrm{D}}=10^{11} \mathrm{~cm}^{-3}$.
(3 pts) $N_{A} \gg N_{D}$ and $N_{A} \gg n_{i}$
(2 pts for the sketch)
$\therefore p \approx N_{A}=10^{18} \mathrm{~cm}^{-3}$

$$
\begin{aligned}
E_{F}-E_{V} & =K T \ln \left(N_{V} / p\right) \\
& =0.0259 \times \ln \left(1.83 \times 10^{19} / 10^{18}\right) \\
& =0.075 \mathrm{eV} \\
E_{C}-E_{F} & =\left(E_{C}-E_{V}\right)-\left(E_{F}-E_{V}\right) \\
& =1.12 \mathrm{eV}-0.075 \mathrm{eV} \\
& =1.045 \mathrm{eV}
\end{aligned}
$$

Acceptable $\left(E c-E_{F}\right)$ range $=1.03 \sim 1.05 \mathrm{eV}$

