EECS 170A Section B Homework Solution #3

1) Answer a-d for the figure shown below:

- a. Do equilibrium conditions prevail? How do you know?
- (2 pts) Yes, the system is in equilibrium.
- (3 pts) The Fermi energy is constant (i.e. $dE_F/dx = 0$). This means that any drift currents (J_{drift}) due to the internal electric fields will cancel out an equal but opposite diffusion current ($J_{diffusion}$). Consequently, the net current flow equals to zero, hence, the system is in equilibrium.

b. Sketch the electrostatic potential (V) inside the semiconductor as a function of x.

The electrostatic potential can be expressed as $V = -E_C/q$. Remember that V is a relative quantity and can be scaled by any reference voltage.

c. Sketch the electric field (E) inside the semiconductor as a function of x

The electric field (E) can be derived from the electrostatic potential (V) by E = -dV/dx = 1/q (dE_C/dx). d. Roughly sketch n and p versus x.

In equilibrium,

$$n = N_C e^{-(E_C - E_f)/KT} = N_i e^{(E_f - E_i)/KT}$$

Electrons accumulate at the lowest energy possible relative to the Fermi energy. Hence, the electron density (n) will be highest near x=0 and x=L.

In equilibrium,

$$p = N_V e^{-(E_f - E_V)/KT} = N_i e^{(E_i - E_V)/KT}$$

When the Fermi energy for the intrinsic semiconductor (E_i) becomes greater than the Fermi level (E_f) , then there is holes accumulation. The magnitude of p peaks at x = L/2.

2) Answer a-d for the figure shown below:

a. Do equilibrium conditions prevail? How do you know?

- (2 pts) Yes, the system is in equilibrium.
- (3 pts) The Fermi energy is constant (i.e. $dE_F/dx = 0$). This means that any drift currents (J_{drift}) due to the internal electric fields will cancel out an equal but opposite diffusion current ($J_{diffusion}$). Consequently, the net current flow equals to zero, hence, the system is in equilibrium.

b. Sketch the electrostatic potential (V) inside the semiconductor as a function of x.

The electrostatic potential can be expressed as $V = -E_c / q$. Center of the graph should be at x=L/2.

c. Sketch the electric field (E) inside the semiconductor as a function of x

The electric field (E) can be derived from the electrostatic potential (V) by E = -dV/dx.

d. Roughly sketch n and p versus x.

(5 pts for n and 5pts for p)

When the Fermi energy for the intrinsic semiconductor (E_i) equals to the Fermi level (E_f) , then the electron and hole concentrations equal to the intrinsic concentration (n_i) .

3) Answer a-d for the figure shown below:

a. Do equilibrium conditions prevail? How do you know?

- (2 pts) Yes, the system is in equilibrium.
- (3 pts) The Fermi energy is constant (i.e. $dE_F/dx = 0$). This means that any drift currents (J_{drift}) due to the internal electric fields will cancel out an equal but opposite diffusion current ($J_{diffusion}$). Consequently, the net current flow equals to zero, hence, the system is in equilibrium.

b. Sketch the electrostatic potential (V) inside the semiconductor as a function of x.

The electrostatic potential can be expressed as $V = -E_c / q$. Center of *the graph should be at* x=L/3 *and* 2L/3.

c. Sketch the electric field (E) inside the semiconductor as a function of x

The electric field (E) can be derived from the electrostatic potential (V) by E = -dV/dx.

d. Roughly sketch n and p versus x.

(5 pts for n and 5pts for p)

When the Fermi energy for the intrinsic semiconductor (E_i) equals to the Fermi level (E_f) , then the electron and hole concentrations equal to the intrinsic concentration (n_i) .

> E_C E_{F}

Ei

4) For Si at 300 K, calculate E_C - E_F and sketch E_C , E_F , E_i , and E_V as in figure 2.18 of the book for the following cases:

a.
$$N_{D} = 10^{18} \text{ cm}^{-3}$$
; $N_{A} = 10^{12} \text{ cm}^{-3}$.
(3 pts) Since $N_{D} >> N_{A}$ and $N_{D} >> n_{i}$
 $\therefore n \approx N_{D} = 10^{18} \text{ cm}^{-3}$
At 300K, $N_{C,V} = 2.510 \times 10^{19} \times (m_{n,p} */m_{0} *)^{3/2}$
From Table 2.1, for Si, $(m_{n} */m_{0} *) = 1.18$;
 $(m_{p} */m_{0} *) = 0.81$
 $N_{C} = 2.510 \times 10^{19} \times (1.18)^{3/2} = 3.217 \times 10^{19} \text{ cm}^{-3}$
 $N_{V} = 2.510 \times 10^{19} \times (0.81)^{3/2} = 1.83 \times 10^{19} \text{ cm}^{-3}$
 $E_{C} - E_{F} = KT \ln (N_{C}/n)$
 $= 0.0259 \times \ln (3.217 \times 10^{19} / 10^{18}) = 0.09 \text{ eV}$
(2 pts for the sketch)
 $(2 pts for the sketch)$
 $0.09 \text{ eV} \otimes 10^{10} \text{ sketch}$
 0.055 eV
Events the sketch of the sketch of

$$E_C - E_i = KT \ln (N_C / n_i) = 0.0259 x \ln (3.217 x 10^{19} / 10^{10}) = 0.57 eV$$

$$E_i - E_V = KT \ln (N_V / n_i) = 0.0259 x \ln (1.83 x 10^{19} / 10^{10}) = 0.55 eV$$

Or another approach:

 $E_F - E_i = KT \ln (n/n_i) = 0.0259 x \ln (10^{18}/10^{10}) = 0.477 eV$ $E_C - E_F = (E_C - E_i) - (E_F - E_i) = 0.57 - 0.477 = 0.093 eV$

Or another approach:

 $E_C - E_i \approx Eg / 2 = 1.12 / 2 = 0.56 \ eV$ $E_C - E_F = (E_C - E_i) - (E_F - E_i) = 0.56 - 0.477 = 0.083 \ eV$

Acceptable $(Ec - E_F)$ range = $0.08 \sim 0.095 \ eV$

b. $N_A = 10^{18} \text{ cm}^{-3}$; $N_D = 10^{12} \text{ cm}^{-3}$.

(3 pts) $N_A >> N_D$ and $N_A >> n_i$ $\therefore p \approx N_A = 10^{18} \text{ cm}^{-3}$ $E_F - E_V = KT \ln (N_V / p)$ $= 0.0259 \text{ x} \ln (1.83 \text{ x} 10^{19} / 10^{18})$ = 0.075 eV $E_C - E_F = (E_C - E_V) - (E_F - E_V)$ = 1.12 eV - 0.075 eV = 1.045 eV(0.075)

Acceptable $(Ec - E_F)$ range = $1.03 \sim 1.05 \ eV$

$$E_C - E_i = E_C - E_F = KT \ln (N_C / n_i) = 0.0259 x \ln (3.217 x 10^{19} / 10^{10}) = 0.57 eV$$

Or another approach:

$$E_C - E_i = E_C - E_F \approx Eg / 2 = 1.12 / 2 = 0.56 \ eV$$

Acceptable $(Ec - E_F)$ range = $0.56 \sim 0.57 \ eV$

d.
$$N_{A} = 10^{12} \text{ cm}^{-3}; N_{D} = 10^{12} \text{ cm}^{-3}.$$

(3 pts) $N_{A} \cdot N_{D} = 0$
 $n = p = n_{i} = 10^{10} \text{ cm}^{-3}$
 $\therefore E_{F} = E_{i}$
At 300K, $N_{C} = 2.510 \times 10^{19} \times (m_{n}^{-9}/m_{0}^{+9})^{5/2}$
From Table 2.1, for Si. $(m_{n}^{-9}/m_{0}^{+9}) = 1.18;$
 $N_{C} = 2.510 \times 10^{19} \times (1.18)^{3/2} = 3.217 \times 10^{19} \text{ cm}^{-3}$
 $E_{C} - E_{i} = E_{C} - E_{F} = KT \ln (N_{C}/n_{i}) = 0.0259 \times \ln (3.217 \times 10^{19}/10^{10}) = 0.57 \text{ eV}$
Or another approach:
 $E_{C} - E_{i} = E_{C} - E_{F} \approx Eg / 2 = 1.12 / 2 = 0.56 \text{ eV}$
Acceptable (Ec - E_{F}) range = 0.56 - 0.57 \text{ eV}
e. $N_{A} = 10^{18} \text{ cm}^{-3}; N_{D} = 10^{11} \text{ cm}^{-3}.$
(2 pts for the sketch)
 $\therefore p \approx N_{A} = 10^{18} \text{ cm}^{-3}$
 $E_{F} - E_{V} = KT \ln (N_{V}/p)$
 $= 0.0259 \times \ln (1.83 \times 10^{19}/10^{18})$
 $= 0.0259 \times \ln (0.53 \times 10^{19}/10^{18})$
 $= 0.0259 \times \ln (1.53 \times 10^{19}/10^{18})$
 $= 0.0259 \times \ln (1.53 \times 10^{19}/10^{18})$
 $= 1.12 \times e^{V} - 0.075 \text{ eV}$
 $= 1.045 \text{ eV}$
 E_{V}
Acceptable (Ec - E_{F}) range = 1.03 - 1.05 \text{ eV}