Name: \qquad

Student ID \#:

EECS 170A

Homework \#4
DUE: December 5, 2007 in discussion.
Please staple this sheet to the front of your homework.

1	2	Total
$/ 50$	$/ 50$	$/ 100$

1) In class we found:

$$
I=I_{0}\left(e^{q V_{\text {diode }} / k T}-1\right)
$$

Take $\mathrm{I}_{0}=10^{-14} \mathrm{~A}$. For the circuit shown, fill in the following table:

$\mathrm{V}_{\mathrm{AD}}(\mathrm{V})$	$\mathrm{V}_{\text {diode }}(\mathrm{V})=\mathrm{V}_{\mathrm{BC}}$	$\mathrm{I}_{\mathrm{AD}}(\mathrm{A})$
0		
0.5		
1		
1.5		
2		
2.5		
3		
3.5		
4		
4.5		
5		
5.5		
6		
6.5		
7		
7.5		
8		
8.5		
9		
9.5		
10		

Name: \qquad

Student ID \#:

Now do the same, assuming the resistors are $1 \mathrm{M} \Omega$ instead of $1 \mathrm{k} \Omega$.

$\mathrm{V}_{\mathrm{AD}}(\mathrm{V})$	$\mathrm{V}_{\text {diode }}(\mathrm{V})=\mathrm{V}_{\mathrm{BC}}$	$\mathrm{I}_{\mathrm{AD}}(\mathrm{A})$
0		
0.5		
1		
1.5		
2		
2.5		
3		
3.5		
4		
4.5		
5		
5.5		
6		
6.5		
7		
7.5		
8		
8.5		
9		
9.5		
10		
$10 y$		

How much does this effect the "on voltage" by?
\qquad

Student ID \#:

2) For the circuit shown below, find $\mathrm{I}_{\mathrm{B}}, \mathrm{I}_{\mathrm{E}}, \mathrm{I}_{\mathrm{C}}, \mathrm{V}_{\mathrm{C}}, \mathrm{V}_{\mathrm{B}}, \mathrm{V}_{\mathrm{E}}, \mathrm{V}_{\mathrm{BE}}, \mathrm{V}_{\mathrm{CE}}, \mathrm{V}_{\mathrm{BC}}$ defined in figure 10.2 (which one, a or b ?) of the text. Hints: the BE voltage drop is about 0.6 V . Take $\beta=100$. Then $\mathrm{I}_{\mathrm{C}}=100 \mathrm{I}_{\mathrm{B}}$. The rest is just applications of Kirchoff's current and voltage laws. Is the transistor biased in active mode?
Assume $\mathrm{R}=1 \mathrm{k} \Omega$.

$\mathrm{I}_{\mathrm{E}}=$	
$\mathrm{I}_{\mathrm{B}}=$	
$\mathrm{I}_{\mathrm{C}}=$	
$\mathrm{V}_{\mathrm{E}}=$	
$\mathrm{V}_{\mathrm{B}}=$	
$\mathrm{V}_{\mathrm{C}}=$	
$\mathrm{V}_{\mathrm{BE}}=$	
$\mathrm{V}_{\mathrm{CE}}=$	
$\mathrm{V}_{\mathrm{BC}}=$	

