Student ID #:\_\_\_\_\_

## EECS 170A Homework #4

DUE: December 5, 2007 in discussion.

Please *staple* this sheet to the front of your homework.

| 1   | 2   | Total |
|-----|-----|-------|
| /50 | /50 | /100  |

## 1) In class we found:

$$I = I_0 \left( e^{qV_{diode}/kT} - 1 \right)$$

Take  $I_0=10^{-14}$  A. For the circuit shown, fill in the following table:



| $V_{AD}(V)$ | V <sub>diode</sub> (V)=V <sub>BC</sub> | $I_{AD}(A)$ |
|-------------|----------------------------------------|-------------|
| 0           |                                        |             |
| 0.5         |                                        |             |
| 1           |                                        |             |
| 1.5         |                                        |             |
| 2 2.5       |                                        |             |
| 2.5         |                                        |             |
| 3           |                                        |             |
| 3.5         |                                        |             |
| 4           |                                        |             |
| 4.5         |                                        |             |
| 5           |                                        |             |
| 5.5         |                                        |             |
| 6           |                                        |             |
| 6.5         |                                        |             |
| 7           |                                        |             |
| 7.5         |                                        |             |
| 8           |                                        |             |
| 8.5         |                                        |             |
| 9           |                                        |             |
| 9.5         |                                        |             |
| 10          |                                        |             |

| Name:         | <br> | <br> |
|---------------|------|------|
| Student ID #: |      |      |

Now do the same, assuming the resistors are 1 M  $\!\Omega$  instead of 1 k  $\!\Omega.$ 

| $V_{AD}(V)$ | V <sub>diode</sub> (V)=V <sub>BC</sub> | $I_{AD}(A)$ |
|-------------|----------------------------------------|-------------|
| 0           |                                        |             |
| 0.5         |                                        |             |
| 1           |                                        |             |
| 1.5         |                                        |             |
| 2           |                                        |             |
| 2.5         |                                        |             |
| 3           |                                        |             |
| 3.5         |                                        |             |
| 4           |                                        |             |
| 4.5         |                                        |             |
| 5           |                                        |             |
| 5.5         |                                        |             |
| 6           |                                        |             |
| 6.5         |                                        |             |
| 7           |                                        |             |
| 7.5         |                                        |             |
| 8           |                                        |             |
| 8.5         |                                        |             |
| 9           |                                        |             |
| 9.5         |                                        |             |
| 10          |                                        |             |

How much does this effect the "on voltage" by?

| Name: |
|-------|
|-------|

Student ID #:\_\_\_\_

2) For the circuit shown below, find  $I_B$ ,  $I_E$ ,  $I_C$ ,  $V_C$ ,  $V_B$ ,  $V_E$ ,  $V_{BE}$ ,  $V_{CE}$ ,  $V_{BC}$  defined in figure 10.2 (which one, a or b?) of the text. Hints: the BE voltage drop is about 0.6 V. Take  $\beta$  = 100. Then  $I_C$  = 100  $I_B$ . The rest is just applications of Kirchoff's current and voltage laws. Is the transistor biased in active mode? Assume  $R = 1 \text{ k}\Omega$ .



| $I_E=$              |  |
|---------------------|--|
| $I_B=$              |  |
| $I_{C}=$ $V_{E}=$   |  |
| $V_{E}=$            |  |
| $V_B =$             |  |
| V <sub>C</sub> =    |  |
| V <sub>BE</sub> =   |  |
| $V_{CE}=$ $V_{BC}=$ |  |
| V <sub>BC</sub> =   |  |
|                     |  |