EECS 170A Section B
 Homework Solution \#4

1) In class we found:

$$
I=I_{0}\left(e^{q V_{\text {diode }} / k T}-1\right)
$$

Take $\mathrm{I}_{0}=10^{-14} \mathrm{~A}$. For the circuit shown, fill in the following table:

Solution:

By applying Kirchoff's Law to this circuit, we obtain

$$
\begin{equation*}
V_{A D}=R I+V_{\text {diode }}+R I=2 R I+V_{\text {diode }} \tag{2}
\end{equation*}
$$

Substitute eqn (1) into (2), we get:

$$
V_{A D}=V_{\text {diode }}+I_{0}\left(e^{q V_{\text {diode }} / k T}-1\right) \times 2 R
$$

Substitute $\mathrm{I}_{0}=10^{-14} \mathrm{~A}$ and $\mathrm{R}=1 \mathrm{~K} \Omega$, we get:

$$
\begin{gathered}
V_{A D}=V_{\text {diode }}+10^{-14} A x\left(e^{q V_{\text {diode }} / k T}-1\right) \times 2 K \Omega \\
V_{\text {AD }}=V_{\text {diode }}+2 \times 10^{-11} x\left(e^{q V_{\text {diode }} / k T}-1\right) \\
\left(e^{q V_{\text {diode }} / k T}-1\right)=\left(V_{A D}-V_{\text {diode }}\right) / 2 \times 10^{-11} \\
V_{\text {diode }}=K T / q \ln \left(\left(V_{A D}-V_{\text {diode }}\right) / 2 \times 10^{-11}+1\right) \\
(2 \text { pts for showing the equations })
\end{gathered}
$$

Since we can not explicitly solve for $\mathrm{V}_{\text {diode }}$ the above transcendental equation can be solved in an iterative process. To begin with, lets take $\mathrm{V}_{\text {diode }}$ in the \log as 0.6 V for the condition that $\mathrm{V}_{\mathrm{AD}}=1 \mathrm{~V}$,

$$
\begin{gathered}
V_{\text {diode }}=0.026 \mathrm{~V} \times \ln \left((1 \mathrm{~V}-0.6 \mathrm{~V}) / 2 \times 10^{-11}+1\right) \\
V_{\text {diode }}=0.6167 \mathrm{~V}
\end{gathered}
$$

For the second iterative step we can use the updated value of $\mathrm{V}_{\text {diode }}$ as 0.62 V and further enhance our precision of $\mathrm{V}_{\text {diode. }}$. Now we get,

$$
\begin{gathered}
V_{\text {diode }}=0.026 \mathrm{~V} \times \ln \left((1 \mathrm{~V}-0.62 \mathrm{~V}) / 2 \times 10^{-11}+1\right) \\
V_{\text {diode }}=0.6154 \mathrm{~V}
\end{gathered}
$$

For the third iterative step we can use the updated value of $\mathrm{V}_{\text {diode }}$ as 0.6156 V and further enhance our precision of $\mathrm{V}_{\text {diode. }}$. Now we get,

$$
\begin{gathered}
\left.V_{\text {diode }}=0.026 \mathrm{~V} \times \ln (1 \mathrm{~V}-0.6156 \mathrm{~V}) / 2 \times 10^{-9}+1\right) \\
V_{\text {diode }}=0.6156 \mathrm{~V}
\end{gathered}
$$

If a further iterative step does not change $\mathrm{V}_{\text {diode }}$ appreciably then we can stop the iteration. In this case, the iterative results in the same value to the thousandths place so the final answer is $\mathrm{V}_{\text {diode }}=0.6156 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{AD}}=1 \mathrm{~V}$.

Now that we know $\mathrm{V}_{\text {diode }}$ we can solve for the current I_{AD} and obtain:

$$
I_{A D}=10^{-14} \mathrm{~A} \times\left(e^{(0.6156 \mathrm{~V} / 0.026 \mathrm{~V})}-1\right)=2.71 \times 10^{-7} \mathrm{~A}
$$

With the same approach, we can obtain the results for each V_{AD} value:

$\mathrm{V}_{\mathrm{AD}}(\mathrm{V})$	$\mathrm{V}_{\text {diode }}(\mathrm{V})=\mathrm{V}_{\text {BC }}$	$\mathrm{I}_{\mathrm{AD}}(\mathrm{A})$
0	0	0
0.5	0.4913	1.94×10^{-6}
1	0.6156	1.92×10^{-4}
1.5	0.6366	4.30×10^{-4}
2	0.6484	6.77×10^{-4}
2.5	0.654	9.23×10^{-4}
3	0.6626	1.17×10^{-3}
3.5	0.6676	1.41×10^{-3}
4	0.6718	1.66×10^{-3}
4.5	0.6754	1.91×10^{-3}
5	0.6786	2.16×10^{-3}
5.5	0.6814	2.41×10^{-3}
6	0.6840	2.66×10^{-3}
6.5	0.6863	2.91×10^{-3}
7	0.6884	3.15×10^{-3}
7.5	0.6904	3.40×10^{-3}
8	0.6922	3.65×10^{-3}
8.5	0.6939	3.90×10^{-3}
9	0.6956	4.15×10^{-3}
9.5	0.6971	4.40×10^{-3}
10	0.6985	4.65×10^{-3}

(0.25 pts for correct answers)

Now do the same, assuming the resistors are $1 \mathrm{M} \Omega$ instead of $1 \mathrm{k} \Omega$.
Substitute $\mathrm{I}_{0}=10^{-14} \mathrm{~A}$ and $\mathrm{R}=1 \mathrm{M} \Omega$, we get:

$$
V_{\text {diode }}=K T / q \ln \left(\left(V_{A D}-V_{\text {diode }}\right) / 2 \times 10^{-8}+1\right)
$$

$\mathrm{V}_{\mathrm{AD}}(\mathrm{V})$	$\mathrm{V}_{\text {diode }}(\mathrm{V})=\mathrm{V}_{\mathrm{BC}}$	$\mathrm{I}_{\mathrm{AD}}(\mathrm{A})$
0	0	0
0.5	0.4008	4.952×10^{-8}
1	0.4458	2.772×10^{-7}
1.5	0.4619	5.189×10^{-7}
2	0.4719	7.640×10^{-7}
2.5	0.4792	1.010×10^{-6}
3	0.4849	1.258×10^{-6}
3.5	0.4896	1.505×10^{-6}
4	0.4935	1.753×10^{-6}
4.5	0.4970	2.002×10^{-6}
5	0.5000	2.250×10^{-6}
5.5	0.5027	2.499×10^{-6}
6	0.5052	2.747×10^{-6}
6.5	0.5075	2.996×10^{-6}
7	0.5095	3.245×10^{-6}
7.5	0.5115	3.494×10^{-6}
8	0.5132	3.743×10^{-6}
8.5	0.5149	3.993×10^{-6}
9	0.5165	4.242×10^{-6}
9.5	0.5180	4.491×10^{-6}
10	0.5194	4.740×10^{-6}

(0.25 pts for correct answers)

How much does this effect the "on voltage" by?
The resistances differ by 3 order of magnitude (from $1 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$), but the on voltage only change by approximately 0.18 V . The effect is relatively small.
(2pts)
2) For the circuit shown below, find Ib, Ie, Ic, Vc, Vb, Ve, Vbe, Vce, Vbc defined in figure 10.2 of the text. Hints: the BE voltage drop is about 0.6 V . Take $\beta=100$. Then Ic $=100$ Iв. The rest is just applications of Kirchoff's current and voltage laws. Is the transistor biased in active mode? Assume $\mathrm{R}=1 \mathrm{k} \Omega$.

Solution:

Assuming the transistors is in active mode,

$$
\begin{align*}
& \mathrm{V}_{\mathrm{BE}}=\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{E}}=0.6 \mathrm{~V} \tag{2.1}\\
& \mathrm{I}_{\mathrm{C}}=\beta \mathrm{I}_{\mathrm{B}}=100 \mathrm{I}_{\mathrm{B}} \tag{2.2}\\
& \mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}}=101 \mathrm{I}_{\mathrm{B}} \tag{2.3}\\
& \mathrm{I}_{\mathrm{C}}=\left(10-\mathrm{V}_{\mathrm{C}}\right) / \mathrm{R} \tag{2.4}\\
& \mathrm{I}_{\mathrm{B}}=\left(5-\mathrm{V}_{\mathrm{B}}\right) /(\mathrm{R}+\mathrm{R} / 2) \tag{2.5}\\
& \mathrm{I}_{\mathrm{E}}=\mathrm{V}_{\mathrm{E}} / \mathrm{R}
\end{align*}
$$

(2.6) (4pts)

From eqn 2.3 and eqn 2.6:

$$
\begin{equation*}
101 \mathrm{I}_{\mathrm{B}}=\mathrm{V}_{\mathrm{E}} / 1 \mathrm{k} \Omega \tag{2.7}
\end{equation*}
$$

Substitute eqn 2.5 into eqn 2.7:

$$
\begin{equation*}
101\left(5-\mathrm{V}_{\mathrm{B}}\right) / 1.5 \mathrm{k} \Omega=\mathrm{V}_{\mathrm{E}} / 1 \mathrm{k} \Omega \tag{2.8}
\end{equation*}
$$

From eqn 2.1 and substitute into eqn 2.8:

$$
\begin{aligned}
& 101\left(5-\mathrm{V}_{\mathrm{B}}\right) / 1.5 \mathrm{k} \Omega=\left(\mathrm{V}_{\mathrm{B}}-0.6\right) / 1 \mathrm{k} \Omega \\
& 101\left(5-\mathrm{V}_{\mathrm{B}}\right)=1.5 \mathrm{~V}_{\mathrm{B}}-0.9
\end{aligned}
$$

$$
\begin{equation*}
\therefore \mathrm{V}_{\mathrm{B}}=4.936 \mathrm{~V} \tag{2.9}
\end{equation*}
$$

Substitute into eqn (2.9) into eqn (2.1):

$$
\begin{align*}
\mathrm{V}_{\mathrm{E}} & =\mathrm{V}_{\mathrm{B}}-0.6 \\
& =4.336 \mathrm{~V} \tag{2.10}
\end{align*}
$$

From eqn (2.5) and eqn (2.9):

$$
\therefore \mathrm{I}_{\mathrm{B}}=\left(5-\mathrm{V}_{\mathrm{B}}\right) / 1.5 \mathrm{R}=4.293 \times 10^{-5} \mathrm{~A}
$$

From eqn (2.2):

$$
\mathrm{I}_{\mathrm{C}}=100 \mathrm{I}_{\mathrm{B}}=4.293 \times 10^{-3} \mathrm{~A}
$$

From eqn (2.3):

$$
\mathrm{I}_{\mathrm{E}}=101 \mathrm{I}_{\mathrm{B}}=4.336 \times 10^{-3} \mathrm{~A}
$$

From eqn (2.4):

$$
\begin{aligned}
\mathrm{V}_{\mathrm{C}} & =10-\mathrm{RI}_{\mathrm{C}} \\
& =5.707 \mathrm{~V}
\end{aligned}
$$

Since $\mathrm{V}_{\mathrm{BE}}=\mathrm{V}_{\mathrm{BE}(\mathrm{on})}$ and $\mathrm{V}_{\mathrm{BC}}<0$, the BJT is indeed in active mode. (4pts)

$\mathrm{IE}=4.336 \times 10^{-3} \mathrm{~A}$	$(2 \mathrm{pts})$
$\mathrm{Ib}=4.293 \times 10^{-5} \mathrm{~A}$	$(2 \mathrm{pts})$
$\mathrm{IC}=4.293 \times 10^{-3} \mathrm{~A}$	$(2 \mathrm{pts})$
Vе $=4.336 \mathrm{~V}$	$(2 \mathrm{pts})$
$\mathrm{V}_{\mathrm{B}}=4.936 \mathrm{~V}$	$(2 \mathrm{pts})$
$\mathrm{VC}=5.707 \mathrm{~V}$	$(2 \mathrm{pts})$
Vве $=0.6 \mathrm{~V}$	$(2 \mathrm{pts})$
VСе $=1.371 \mathrm{~V}$	$(2 \mathrm{pts})$
Vвс $=-0.771 \mathrm{~V}$	$(2 \mathrm{pts})$

