EECS 170A Section B Homework Solution #4

1) In class we found:

$$I = I_0(e^{qV_{diode}/kT} - 1)$$

Take $I_0 = 10^{-14}$ A. For the circuit shown, fill in the following table:

Solution:

By applying Kirchoff's Law to this circuit, we obtain

$$V_{AD} = RI + V_{diode} + RI = 2RI + V_{diode}$$
(2)

Substitute eqn (1) into (2), we get:

$$V_{AD} = V_{diode} + I_0 (e^{qV_{diode}/kT} - 1) \times 2R$$

Substitute
$$I_0 = 10^{-14} A$$
 and $R = 1 K\Omega$, we get:
 $V_{AD} = V_{diode} + 10^{-14} A x (e^{qV_{diode}/kT} - 1) x 2K\Omega$
 $V_{AD} = V_{diode} + 2 x 10^{-11} x (e^{qV_{diode}/kT} - 1)$
 $(e^{qV_{diode}/kT} - 1) = (V_{AD} - V_{diode}) / 2 x 10^{-11}$
 $V_{diode} = KT/q \ln ((V_{AD} - V_{diode}) / 2 x 10^{-11} + 1)$
 $(2pts for showing the equations)$

Since we can not explicitly solve for V_{diode} the above transcendental equation can be solved in an iterative process. To begin with, lets take V_{diode} in the log as 0.6V for the condition that $V_{AD} = 1V$,

$$V_{diode} = 0.026V x \ln ((1V - 0.6V) / 2 x 10^{-11} + 1)$$

$$V_{diode} = 0.6167V$$

For the second iterative step we can use the updated value of V_{diode} as 0.62V and further enhance our precision of $V_{diode.}$ Now we get,

$$V_{diode} = 0.026V x \ln ((1V - 0.62V) / 2 x 10^{-11} + 1)$$

$$V_{diode} = 0.6154V$$

For the third iterative step we can use the updated value of V_{diode} as 0.6156V and further enhance our precision of $V_{diode.}$ Now we get,

$$V_{diode} = 0.026V x \ln (1V - 0.6156V) / 2 x 10^{-9} + 1)$$

$$V_{diode} = 0.6156V$$

If a further iterative step does not change V_{diode} appreciably then we can stop the iteration. In this case, the iterative results in the same value to the thousandths place so the final answer is $V_{diode} = 0.6156V$ for $V_{AD} = 1V$.

Now that we know V_{diode} we can solve for the current I_{AD} and obtain:

$$I_{AD} = 10^{-14} A x (e^{(0.6156V/0.026V)} - 1) = 2.71 x 10^{-7} A$$

With the same approach, we can obtain the results for each V_{AD} value:

$V_{AD}(V)$	$V_{diode}(V) = V_{BC}$	$I_{AD}\left(A ight)$
0	0	0
0.5	0.4913	1.94 x 10 ⁻⁶
1	0.6156	1.92 x 10 ⁻⁴
1.5	0.6366	4.30 x 10 ⁻⁴
2	0.6484	6.77 x 10 ⁻⁴
2.5	0.654	9.23 x 10 ⁻⁴
3	0.6626	1.17 x 10 ⁻³
3.5	0.6676	1.41 x 10 ⁻³
4	0.6718	1.66 x 10 ⁻³
4.5	0.6754	1.91 x 10 ⁻³
5	0.6786	2.16×10^{-3}
5.5	0.6814	2.41 x 10 ⁻³
6	0.6840	2.66 x 10 ⁻³
6.5	0.6863	2.91 x 10 ⁻³
7	0.6884	3.15 x 10 ⁻³
7.5	0.6904	3.40 x 10 ⁻³
8	0.6922	3.65 x 10 ⁻³
8.5	0.6939	3.90 x 10 ⁻³
9	0.6956	4.15 x 10 ⁻³
9.5	0.6971	$4.40 \ge 10^{-3}$
10	0.6985	4.65×10^{-3}

(0.25 pts for correct answers)

Now do the same, assuming the resistors are 1 $M\Omega$ instead of 1 k .

Substitute $I_0 = 10^{-14} A$ and $R = 1 M\Omega$, we get:

$V_{AD}(V)$	$V_{diode}(V) = V_{BC}$	$I_{AD}(A)$
0	0	0
0.5	0.4008	4.952 x 10 ⁻⁸
1	0.4458	2.772 x 10 ⁻⁷
1.5	0.4619	5.189 x 10 ⁻⁷
2	0.4719	7.640 x 10 ⁻⁷
2.5	0.4792	1.010 x 10 ⁻⁶
3	0.4849	1.258 x 10 ⁻⁶
3.5	0.4896	1.505 x 10 ⁻⁶
4	0.4935	1.753 x 10 ⁻⁶
4.5	0.4970	2.002 x 10 ⁻⁶
5	0.5000	2.250 x 10 ⁻⁶
5.5	0.5027	2.499 x 10 ⁻⁶
6	0.5052	2.747 x 10 ⁻⁶
6.5	0.5075	2.996 x 10 ⁻⁶
7	0.5095	3.245 x 10 ⁻⁶
7.5	0.5115	3.494 x 10 ⁻⁶
8	0.5132	3.743 x 10 ⁻⁶
8.5	0.5149	3.993 x 10 ⁻⁶
9	0.5165	4.242 x 10 ⁻⁶
9.5	0.5180	4.491 x 10 ⁻⁶
10	0.5194	4.740 x 10 ⁻⁶

$$V_{diode} = KT/q \ln ((V_{AD} - V_{diode}) / 2 \times 10^{-8} + 1)$$

(0.25 pts for correct answers)

How much does this effect the "on voltage" by?

The resistances differ by 3 order of magnitude (from $1k\Omega$ to $1M\Omega$), but the on voltage only change by approximately 0.18V. The effect is relatively small. (*2pts*)

2) For the circuit shown below, find IB, IE, IC, VC, VB, VE, VBE, VCE, VBC defined in figure 10.2 of the text. Hints: the BE voltage drop is about 0.6 V. Take $\beta = 100$. Then IC = 100 IB. The rest is just applications of Kirchoff's current and voltage laws. Is the transistor biased in active mode? Assume R = 1 k Ω .

Solution:

Assuming the transistors is in active mode,

$V_{BE} = V_B - V_E = 0.6 V$	(2.1)	(4pts)
$I_{\rm C} = \beta I_{\rm B} = 100 \ I_{\rm B}$	(2.2)	(4pts)
$I_{\rm E} = I_{\rm B} + I_{\rm C} = 101 \ I_{\rm B}$	(2.3)	(4pts)
$I_{\rm C} = (10 - V_{\rm C}) / R$	(2.4)	(4pts)
$I_{\rm B} = (5-V_{\rm B}) / (R+R/2)$	(2.5)	(4pts)

$$I_E = V_E / R \qquad (2.6) \quad (4pts)$$

 $\begin{array}{ll} \mbox{From eqn 2.3 and eqn 2.6:} & 101 \ I_B = V_E \,/\, 1k\Omega & (2.7) \\ \mbox{Substitute eqn 2.5 into eqn 2.7:} & 101 \ (5{\text{-}}V_B) \,/\, 1.5k\Omega = V_E \,/\, 1k\Omega & (2.8) \\ \mbox{From eqn 2.1 and substitute into eqn 2.8:} & 101 \ (5{\text{-}}V_B) \,/\, 1.5k\Omega = (V_B - 0.6) \,/\, 1k\Omega & 101 \ (5{\text{-}}V_B) = 1.5V_B - 0.9 \\ \end{array}$

:
$$V_{\rm B} = 4.936 \, {\rm V}$$
 (2.9)

Substitute into eqn (2.9) into eqn (2.1): $V_E = V_B - 0.6$ = 4.336 V (2.10)

From eqn (2.5) and eqn (2.9):

:. $I_B = (5-V_B) / 1.5R = 4.293 \times 10^{-5} A$

From eqn (2.2):

$$I_{\rm C} = 100 I_{\rm B} = 4.293 \text{ x } 10^{-3} \text{ A}$$

From eqn (2.3):

 $I_E = 101 I_B = 4.336 \times 10^{-3} A$

From eqn (2.4):

$$V_{C} = 10 - R I_{C}$$

= 5.707 V

Since $V_{BE} = V_{BE(on)}$ and $V_{BC} < 0$, the BJT is indeed in active mode. (4pts)

IE = $4.336 \times 10^{-3} \text{ A}$	(2pts)
$IB = 4.293 \times 10^{-5} A$	(2pts)
$Ic = 4.293 \times 10^{-3} A$	(2pts)
$V_{\rm E} = 4.336 \ {\rm V}$	(2pts)
$V_{\rm B} = 4.936 \ {\rm V}$	(2pts)
Vc = 5.707 V	(2pts)
$V_{BE} = 0.6 V$	(2pts)
Vce = 1.371 V	(2pts)
VBC = - 0.771 V	(2pts)