\qquad
5/28/2007 11:00 to 12:20 pm
ID no.: \qquad
Professor Peter Burke

1	2	3	4	5	Total
	$/ 20$		$/ 20$	$/ 20$	$/ 20$

DO NOT BEGIN THE EXAM UNTIL YOU ARE TOLD TO DO SO.

EECS170A Spring 2007 Midterm Exam \#2
5/28/2007 11:00 to 12:20 pm
Professor Peter Burke

PROBLEM ONE: (20 points)

In a certain application, the circuit in the figure below must be designed to meet these two criteria:
(a) $V_{o} / V_{s}=0.05$
(b) $R_{\text {eq }}=40 \mathrm{k} \Omega$

If the load resistor $5 \mathrm{k} \Omega$ is fixed, find R_{1} and R_{2} to meet the criteria.

EECS170A Spring 2007 Midterm Exam \#2
5/28/2007 11:00 to 12:20 pm
Professor Peter Burke

PROBLEM TWO:

A load is connected to a network. At the terminals to which the load is connected, $\mathrm{R}_{\mathrm{Th}}=10 \Omega$ and $\mathrm{V}_{\mathrm{Th}}=40 \mathrm{~V}$. Find the maximum possible power supplied to the load.

EECS170A Spring 2007 Midterm Exam \#2
5/28/2007 11:00 to 12:20 pm
Professor Peter Burke

PROBLEM THREE:

The equivalent capacitance at terminals $a-b$ in the circuit in the figure below is $20 \mu \mathrm{~F}$. Calculate the value of C.

EECS170A Spring 2007 Midterm Exam \#2
5/28/2007 11:00 to 12:20 pm
Professor Peter Burke

PROBLEM FOUR:

Determine $\boldsymbol{R}_{\mathrm{Th}}$ and $\boldsymbol{V}_{\mathrm{Th}}$ at terminals 1-2 of the circuits shown below.

EECS170A Spring 2007 Midterm Exam \#2
5/28/2007 11:00 to 12:20 pm
Professor Peter Burke

PROBLEM FIVE:

Obtain v_{o} for the op amp circuit shown below.

