Name:

5/28/2007 11:00 to 12:20 pm Professor Peter Burke

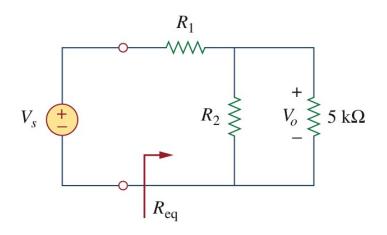
ID	no.	:_
----	-----	----

1	-	2	3	4	5	Total
	/20	/20	/20	/20	/20	/100

DO NOT BEGIN THE EXAM UNTIL YOU ARE TOLD TO DO SO.

ID no.:_____

Name:


5/28/2007 11:00 to 12:20 pm Professor Peter Burke

PROBLEM ONE: (20 points)

In a certain application, the circuit in the figure below must be designed to meet these two criteria:

(a) $V_o / V_s = 0.05$ (b) $R_{eq} = 40 \text{ k}\Omega$

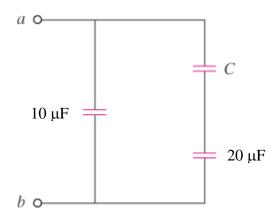
If the load resistor 5 k Ω is fixed, find R_1 and R_2 to meet the criteria.

Name:_____

5/28/2007 11:00 to 12:20 pm Professor Peter Burke ID no.:_____

PROBLEM TWO:

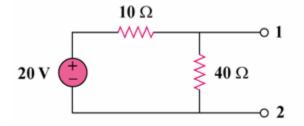
A load is connected to a network. At the terminals to which the load is connected, $R_{Th} = 10 \Omega$ and $V_{Th} = 40 V$. Find the maximum possible power supplied to the load.


Name:_____

5/28/2007 11:00 to 12:20 pm Professor Peter Burke

ID no.:_____

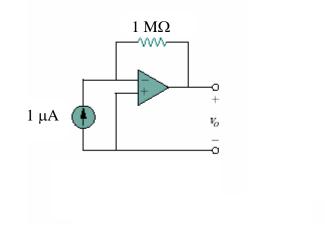
PROBLEM THREE:


The equivalent capacitance at terminals *a-b* in the circuit in the figure below is 20 μ F. Calculate the value of *C*.

Name:_____ ID no.:_____

5/28/2007 11:00 to 12:20 pm Professor Peter Burke **PROBLEM FOUR:**

Determine \mathbf{R}_{Th} and \mathbf{V}_{Th} at terminals 1-2 of the circuits shown below.



Name:_____

5/28/2007 11:00 to 12:20 pm Professor Peter Burke ID no.:

PROBLEM FIVE:

Obtain v_o for the op amp circuit shown below.

