Spring, 2007

EECS70A / CSE 70A Network Analysis I Prof. Peter Burke

Midterm II solution

Grading criteria: for all questions, no credits for answers without units and -5pts for each wrong unit.

Problem 1:

Criteria: (a) $V_{\rm o} / V_{\rm s}$	= 0.05 and (b) $R_{eq} = 40 \text{ k}\Omega$
From the circuit, R	$_{\rm eq} = \mathbf{R}_1 + \mathbf{R}_2 \parallel 5 \ \mathrm{k}\Omega = 40 \ \mathrm{k}\Omega$
Using voltage divid	der: $V_o = V_s$. $(R_2 \parallel 5 \ k\Omega) / (R_1 + R_2 \parallel 5 \ k\Omega)$
	$V_o / V_s = (R_2 \parallel 5 \ k\Omega) / (R_1 + R_2 \parallel 5 \ k\Omega) = 0.05$
	$(\mathbf{R}_2 \parallel 5 \ \mathbf{k}\Omega) = 0.05 \ \mathbf{x} \ 40 \ \mathbf{k}\Omega = 2 \ \mathbf{k}\Omega$
	$(R_2 \ge 5 k\Omega) / (R_2 + 5 k\Omega) = 2 k\Omega$
	$R_2 = 0.4 R_2 + 2 k\Omega$
	$\therefore R_2 = 3.3 \text{ k}\Omega$
	$\therefore \mathbf{R}_1 = 40 \ \mathrm{k}\Omega - \mathbf{R}_2 \parallel 5 \ \mathrm{k}\Omega = 38 \ \mathrm{k}\Omega$
Grading criteria:	-5pts for every incorrect equation
	-2pts for each wrong substitution
	-2pts for wrong final answers

Problem 2:

To have maximum possible power supplied to the load, $R_{Th} = R_L = 10\Omega$ Wmax = $V_{Th}^2 / 4R_{Th} = (40)^2 / (4 \times 10) = 40$ W

Grading criteria: -5pts for incorrect equation -5pts for wrong R_L -5pts for wrong substitutions -2pts for wrong final answer

Problem 3:

 $10\mu F + 1 / (1/C + 1/20\mu F) = 20\mu F$ $1/C + 1/20\mu F = 1/10\mu F$ $\therefore C = 20 \mu F$

Grading criteria:	-5pts for incorrect equation
	-2pts for wrong answer, with right equation

Problem 4:

$$\begin{split} R_{Th} &= 10\Omega \parallel 40\Omega = 8\Omega \\ V_{Th} &= 20 \text{ V } x \; (40\Omega \; / \; (40\Omega + 10\Omega)) = 16 \text{ V} \end{split}$$

Grading criteria:	-10pts for each wrong answer without showing any derivations
	-5pts for each wrong equation
	-2pts for wrong answer, with right equations

Problem 5:

 $v_o = -1$ V

Grading criteria:	-5pts for incorrect KCL equation
	-2pts for wrong answer
	-10pts for wrong answer and without KCL equation