EECS70A / CSE 70A Network Analysis I
 Prof. Peter Burke

Homework \# 6 solution

Chapter 8, Solution 17.

$$
\begin{aligned}
& \mathrm{i}(0)=\mathrm{I}_{0}=0, \mathrm{v}(0)=\mathrm{V}_{0}=4 \mathrm{x} 15=60 \\
& \frac{\mathrm{di}(0)}{\mathrm{dt}}=-\frac{1}{\mathrm{~L}}\left(\mathrm{RI}_{0}+\mathrm{V}_{0}\right)=-4(0+60)=-240 \\
& \omega_{0}=\frac{1}{\sqrt{\mathrm{LC}}}=\frac{1}{\sqrt{\frac{1}{4} \frac{1}{25}}}=10 \\
& \alpha=\frac{\mathrm{R}}{2 \mathrm{~L}}=\frac{10}{2 \frac{1}{4}}=20, \text { which is }>\omega_{0} . \\
& \mathrm{s}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}}=-20 \pm \sqrt{300}=-20 \pm 10 \sqrt{3}=-2.679,-37.32 \\
& \mathrm{i}(\mathrm{t})=\mathrm{A}_{1} \mathrm{e}^{-2.679 \mathrm{t}}+\mathrm{A}_{2} \mathrm{e}^{-37.32 \mathrm{t}} \\
& \mathrm{i}(0)=0=\mathrm{A}_{1}+\mathrm{A}_{2}, \frac{\mathrm{di}(0)}{\mathrm{dt}}=-2.679 \mathrm{~A}_{1}-37.32 \mathrm{~A}_{2}=-240 \\
& \text { This leadsto } \mathrm{A}_{1}=-6.928=-\mathrm{A}_{2} \\
& \mathrm{i}(\mathrm{t})=6.928\left(\mathrm{e}^{-37.32 \mathrm{t}}-\mathrm{e}^{-2.679 \mathrm{t}}\right) \\
& \text { Since, } \mathrm{v}(\mathrm{t})=\frac{1}{\mathrm{C}} \int_{0}^{\mathrm{t}} \mathrm{i}(\mathrm{t}) \mathrm{dt}+\text { const, and } \mathrm{v}(0)=60 \mathrm{~V}, \text { we get } \\
& \quad \mathrm{v}(\mathrm{t})=\underline{\left(64.65 e^{-2.679 t}\right.}-4.641 e^{-37.32 \mathrm{t}} \\
&) \mathrm{V}
\end{aligned}
$$

We note that $\mathrm{v}(0)=60.009 \mathrm{~V}$ and not 60 V . This is due to rounding errors since $\mathbf{v}(\mathbf{t})$ must go to zero as time goes to infinity. \{In other words, the constant of integration must be zero.

Chapter 8, Solution 24

When the switch is in position A, the inductor acts like a short circuit so

$$
i\left(0^{-}\right)=4
$$

When the switch is in position B, we have a source-free parallel RCL circuit

$$
\begin{aligned}
& \alpha=\frac{1}{2 \mathrm{RC}}=\frac{1}{2 \times 10 \times 10 \times 10^{-3}}=5 \\
& \omega_{\mathrm{o}}=\frac{1}{\sqrt{\mathrm{LC}}}=\frac{1}{\sqrt{\frac{1}{4} \times 10 \times 10^{-3}}}=20
\end{aligned}
$$

Since $\alpha<\omega_{0}$, we have an underdamped case.

$$
\begin{gathered}
\mathrm{S}_{12}=-5+\sqrt{25-400}=-5+j 19.365 \\
i(t)=e^{-5 t}\left(A_{1} \cos 19.365 t+A_{2} \sin 19.365 t\right) \\
i(0)=4=A_{1} \\
v=L \frac{d i}{d t} \longrightarrow \frac{d i(0)}{d t}=\frac{v(0)}{L}=0 \\
\frac{d i}{d t}=e^{-5 t}\left(-5 A_{1} \cos 19.365 t-5 A_{2} \sin 19.365 t-19.365 A_{1} \sin 19.365 t+19.365 A_{2} \cos 19.365 t\right) \\
0=\frac{d i(0)}{d t}=-5 A_{1}+19.365 A_{2} \quad \longrightarrow \quad A_{2}=\frac{5 A_{1}}{19.365}=1.033 \\
i(t)=e^{-5 t}(4 \cos 19.365 t+1.033 \sin 19.365 t)
\end{gathered}
$$

Chapter 8, Solution 34.

Before $\mathrm{t}=0$, the capacitor acts like an open circuit while the inductor behaves like a short circuit.

$$
i(0)=0, v(0)=20 \mathrm{~V}
$$

For $\mathrm{t}>0$, the LC circuit is disconnected from the voltage source.
This is a lossless, source-free, series RLC circuit.

$$
\alpha=\mathrm{R} /(2 \mathrm{~L})=0, \omega_{0}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{\frac{1}{16}+\frac{1}{4}}=8, \quad \mathrm{~s}= \pm \mathrm{j} 8
$$

Since α is less than ω_{0}, we have an underdamped response. Therefore,

$$
\begin{aligned}
& \mathrm{i}(\mathrm{t})=\mathrm{A}_{1} \cos 8 \mathrm{t}+\mathrm{A}_{2} \sin 8 \mathrm{t} \text { where } \mathrm{i}(0)=0=\mathrm{A}_{1} \\
& \mathrm{di}(0) / \mathrm{dt}=(1 / \mathrm{L}) \mathrm{v}_{\mathrm{L}}(0)=-(1 / \mathrm{L}) \mathrm{v}(0)=-4 \times 20=-80
\end{aligned}
$$

However, $\quad \mathrm{di} / \mathrm{dt}=8 \mathrm{~A}_{2} \cos 8 \mathrm{t}$, thus, $\mathrm{di}(0) / \mathrm{dt}=-80=8 \mathrm{~A}_{2}$ which leads to $\mathrm{A}_{2}=-10$

Now we have $\quad i(t)=\underline{\mathbf{- 1 0} \sin 8 t ~ A}$

Chapter 8, Solution 46.

For $t=0-, u(t)=0$, so that $v(0)=0$ and $i(0)=0$.
For $t>0$, we have a parallel RLC circuit with a step input

$$
\begin{aligned}
& \alpha=1 /(2 \mathrm{RC})=(1) /\left(2 \times 2 \times 10^{3} \times 5 \times 10^{-6}\right)=50 \\
& \omega_{0}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{8 \times 10^{-3} \times 5 \times 10^{-6}}=5,000
\end{aligned}
$$

Since $\alpha<\omega_{0}$, we have an underdamped response.

$$
s_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{o}^{2}} \cong-50 \pm j 5,000
$$

Thus,

$$
\mathrm{i}(\mathrm{t})=\mathrm{I}_{\mathrm{s}}+\left[(\mathrm{A} \cos 5,000 \mathrm{t}+\mathrm{B} \sin 5,000 \mathrm{t}) \mathrm{e}^{-50 \mathrm{t}}\right], \quad \mathrm{I}_{\mathrm{s}}=6 \mathrm{~mA}
$$

$$
\begin{aligned}
\mathrm{i}(0)=0=6+\mathrm{A} \text { or } \mathrm{A}=-6 \mathrm{~mA} \\
\mathrm{v}(0)=0=\mathrm{Ldi}(0) / \mathrm{dt}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{di} / \mathrm{dt}=\left[5,000(-\mathrm{Asin} 5,000 \mathrm{t}+\mathrm{B} \cos 5,000 \mathrm{t}) \mathrm{e}^{-50 \mathrm{t}}\right]+\left[-50(\mathrm{~A} \cos 5,000 \mathrm{t}+\mathrm{B} \sin 5,000 \mathrm{t}) \mathrm{e}^{-50 \mathrm{t}}\right] \\
& \mathrm{di}(0) / \mathrm{dt}=0=5,000 \mathrm{~B}-50 \mathrm{~A} \text { or } \mathrm{B}=0.01(-6)=-0.06 \mathrm{~mA}
\end{aligned}
$$

Thus, $i(t)=\left\{6-\left[(6 \cos 5,000 t+0.06 \sin 5,000 t) e^{-50 t}\right]\right\} \mathbf{m A}$

Chapter 8, Solution 57.

(a) Let $\mathrm{v}=$ capacitor voltage and $\mathrm{i}=$ inductor current. At $\mathrm{t}=0$-, the switch is closed and the circuit has reached steady-state.

$$
\mathrm{v}(0-)=16 \mathrm{~V} \text { and } \mathrm{i}(0-)=16 / 8=2 \mathrm{~A}
$$

At $t=0+$, the switch is open but, $\mathrm{v}(0+)=16$ and $\mathrm{i}(0+)=2$.

We now have a source-free RLC circuit.

$$
\begin{gathered}
\mathrm{R} 8+12=20 \text { ohms, } \mathrm{L}=1 \mathrm{H}, \mathrm{C}=4 \mathrm{mF} . \\
\alpha=\mathrm{R} /(2 \mathrm{~L})=(20) /(2 \mathrm{x} 1)=10 \\
\omega_{0}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{1 \mathrm{x}(1 / 36)}=6
\end{gathered}
$$

Since $\alpha>\omega_{0}$, we have a overdamped response.

$$
s_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}}=-18,-2
$$

Thus, the characteristic equation is $(\mathrm{s}+2)(\mathrm{s}+18)=0$ or $\underline{\underline{\mathbf{s}}} \underline{\underline{2}+20 \mathrm{~s}+\mathbf{3 6}=\mathbf{0}}$.
(b) $\quad \mathrm{i}(\mathrm{t})=\left[\mathrm{Ae}^{-2 \mathrm{t}}+\mathrm{Be}^{-18 \mathrm{t}}\right]$ and $\mathrm{i}(0)=2=\mathrm{A}+\mathrm{B}$

To get di(0)/dt, consider the circuit below at $t=0+$.

$$
\begin{align*}
& -\mathrm{v}(0)+20 \mathrm{i}(0)+\mathrm{v}_{\mathrm{L}}(0)=0 \text {, which leads to, } \\
& -16+20 \times 2+\mathrm{v}_{\mathrm{L}}(0)=0 \text { or } \mathrm{v}_{\mathrm{L}}(0)=-24 \\
& \operatorname{Ldi}(0) / \mathrm{dt}=\mathrm{v}_{\mathrm{L}}(0) \text { which gives } \mathrm{di}(0) / \mathrm{dt}=\mathrm{v}_{\mathrm{L}}(0) / \mathrm{L}=-24 / 1=-24 \mathrm{~A} / \mathrm{s} \\
& \text { Hence }-24=-2 \mathrm{~A}-18 \mathrm{~B} \text { or } 12=\mathrm{A}+9 \mathrm{~B} \tag{2}\\
& \text { From (1) and (2), } \quad B=1.25 \text { and } A=0.75 \\
& \mathrm{i}(\mathrm{t})=\left[0.75 \mathrm{e}^{-2 \mathrm{t}}+1.25 \mathrm{e}^{-18 t}\right]=-\mathrm{i}_{x}(\mathrm{t}) \text { or } \mathrm{i}_{\mathrm{x}}(\mathrm{t})=\left[-\mathbf{0 . 7 5} \mathbf{e}^{-2 \mathrm{t}}-\mathbf{1 . 2 5} \mathrm{e}^{-18 t}\right] \mathbf{A} \\
& v(t)=8 i(t)=\left[6 e^{-2 t}+10 e^{-18 t}\right] A
\end{align*}
$$

