EECS70A / CSE 70A Network Analysis I
 Prof. Peter Burke

Midterm II solution

Grading criteria for all questions: no credits for answers without units and - 3pts for calculation error

Problem 1:

At node 1,

$$
4+2=\mathrm{v}_{1} /(5)+\mathrm{v}_{1} /(10) \longrightarrow \mathrm{v}_{1}=20
$$

At node 2,

$$
\begin{aligned}
& 5-2=v_{2} /(10)+v_{2} /(5) \longrightarrow \mathrm{v}_{2}=10 \\
& i_{1}=v_{1} /(5)=\underline{\mathbf{4} \mathbf{A}}, i_{2}=v_{1} /(10)=\underline{\mathbf{2} \mathbf{A}}, i_{3}=v_{2} /(10)=\underline{\mathbf{1} \mathbf{A}}, i_{4}=v_{2} /(5)=\underline{\mathbf{2} \mathbf{A}}
\end{aligned}
$$

Grading criteria: 3pts for only KCL at ground or at one node
5pts for only KCL equation or mesh equation with wrong sign 10 pts for correct $K C L$ equation at V_{1} and V_{2} or mesh equation with incorrect answer

Problem 2:

At the top node, KVL gives

$$
\begin{aligned}
& \frac{\mathrm{V}_{0}-36}{1}+\frac{\mathrm{V}_{\mathrm{O}}-0}{2}+\frac{\mathrm{V}_{\mathrm{O}}-(-12)}{4}=0 \\
& 1.75 \mathrm{~V}_{0}=33 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{o}}=18.86 \mathrm{~V}
\end{aligned}
$$

Alternatively, mesh analysis can be used
$\mathrm{i}_{1}=17.14 \mathrm{~A}, \mathrm{i}_{2}=7.71 \mathrm{~A}$
$\mathrm{V}_{0}=2\left(\mathrm{i}_{1}-\mathrm{i}_{2}\right)=18.86 \mathrm{~V}$
$\begin{array}{lc}\text { Grading criteria: } & \text { 5pts for only KCL or mesh equation with wrong sign } \\ & \text { 5pts for correct mesh current } \mathrm{i}_{1} \text { and } \mathrm{i}_{2} \text { on mesh analysis } \\ & \text { 10pts for correct KCL or mesh equation with incorrect answer }\end{array}$

Problem 3:

We replace the box with the Thevenin equivalent.

When $\mathrm{i}=1.5, \quad \mathrm{v}=3, \quad$ which implies that $\mathrm{V}_{\mathrm{Th}}=3+1.5 \mathrm{R}_{\mathrm{Th}}$

When $\mathrm{i}=1, \quad \mathrm{v}=8$, which implies that $\mathrm{V}_{\mathrm{Th}}=8+\mathrm{R}_{\mathrm{Th}}$

From (1) and (2), $\mathrm{R}_{\mathrm{Th}}=10$ ohms and $\mathrm{V}_{\mathrm{Th}}=18 \mathrm{~V}$.
(a) \quad When $\mathrm{R}=4, \quad \mathrm{i}=\mathrm{V}_{\mathrm{Th}} /\left(\mathrm{R}+\mathrm{R}_{\mathrm{Th}}\right)=18 /(4+10)=\underline{\mathbf{1 . 2 8 5 7 ~ A}}$
(b) For maximum power, $\underline{\mathrm{R}=\mathrm{R}_{\underline{T H}}}$

$$
\begin{aligned}
P_{\max } & =\left(\mathrm{V}_{\mathrm{Th}}\right)^{2} / 4 \mathrm{R}_{\mathrm{Th}}=18^{2} /(4 \times 10)=\mathbf{8 . 1} \text { watts } \\
& =\mathrm{i}^{2} \mathrm{R}_{\mathrm{Th}}=(0.9)^{2} \mathrm{X} 10=\mathbf{8 . 1} \text { watts }
\end{aligned}
$$

Grading criteria: No credit for final answers without $\mathrm{R}_{\mathrm{Th},} \mathrm{V}_{\mathrm{Th}}$
2pts for showing equivalent circuit in the box $\left(\mathrm{R}_{\mathrm{Th}}, \mathrm{V}_{\mathrm{Th}}\right)$
3pts for correct i equation
3pts for correct power equation showing $\mathrm{R}=\mathrm{R}_{\mathrm{Th}}$

pts for correct R_{Th} and V_{Th}

Problem 4:

(a) If v_{a} and v_{b} are the voltages at the inverting and noninverting terminals of the op amp.

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{a}}=\mathrm{v}_{\mathrm{b}}=0 \\
& 1 \mathrm{~mA}=\frac{0-\mathrm{v}_{0}}{2 \mathrm{k}} \quad \longrightarrow \quad \mathrm{v}_{0}=\underline{-2 \mathbf{V}}
\end{aligned}
$$

(b)

Since $\mathrm{v}_{\mathrm{a}}=\mathrm{v}_{\mathrm{b}}=1 \mathrm{~V}$ and $\mathrm{i}_{\mathrm{a}}=0$, no current flows through the $10 \mathrm{k} \Omega$ resistor.
From Fig. (b),

$$
-\mathrm{v}_{\mathrm{a}}+2+\mathrm{v}_{0}=0 \longrightarrow \mathrm{v}_{0}=\mathrm{v}_{\mathrm{a}}-2=1-2=\underline{\mathbf{- 1} \mathbf{V}}
$$

Grading criteria: 3 pts for correct V_{a} and V_{b} for each question
5 pts for correct KCL equation for (a) with wrong answer
-3pts for wrong sign of final answer with correct steps
Problem 5:
$\mathrm{C}_{\text {eq }}=3 \mathrm{~F} / / 6 \mathrm{~F} / / 4 \mathrm{~F}=3+6+4=13 \mathrm{~F}$

Grading criteria: 3pts for showing parallel connection with wrong answer -3pts for calculation error
Problem 6:

$$
\begin{gathered}
\mathrm{L} / / \mathrm{L}=0.5 \mathrm{~L}, \quad \mathrm{~L}+\mathrm{L}=2 \mathrm{~L} \\
L_{e q}=L+2 L / / 0.5 L=L+\frac{2 L x 0.5 L}{2 L+0.5 L}=\underline{1.4 L}=\underline{\mathbf{1} .4 \mathbf{L}} .
\end{gathered}
$$

Grading criteria: 3pts for showing correct connections with wrong answer -3pts for calculation error

