EECS70A / CSE 70A Network Analysis I Prof. Peter Burke

Midterm II solution

Grading criteria for all questions: no credits for answers without units and - 3pts for calculation error

Problem 1:

At node 1,

$$4 + 2 = v_1/(5) + v_1/(10)$$
 $v_1 = 20$

At node 2,

$$5 - 2 = v_2/(10) + v_2/(5) \longrightarrow v_2 = 10$$

$$i_1 = v_1/(5) = \underline{4} \underline{A}, i_2 = v_1/(10) = \underline{2} \underline{A}, i_3 = v_2/(10) = \underline{1} \underline{A}, i_4 = v_2/(5) = \underline{2} \underline{A}$$

Grading criteria: 3pts for only KCL at ground or at one node

5pts for only KCL equation or mesh equation with wrong sign 10pts for correct KCL equation at V_1 and V_2 or mesh equation with incorrect answer

Problem 2:

At the top node, KVL gives

$$\frac{V_{o} - 36}{1} + \frac{V_{o} - 0}{2} + \frac{V_{o} - (-12)}{4} = 0$$

$$1.75V_{o} = 33V$$
 or $V_{o} = 18.86V$

Alternatively, mesh analysis can be used $i_1=17.14A$, $i_2=7.71A$ $V_0=2(i_1-i_2)=18.86$ V

Grading criteria: 5pts for only KCL or mesh equation with wrong sign 5pts for correct mesh current i₁ and i₂ on mesh analysis 10pts for correct KCL or mesh equation with incorrect answer

Problem 3:

We replace the box with the Thevenin equivalent.

When i = 1.5, v = 3, which implies that $V_{Th} = 3 + 1.5R_{Th}$ (1)

When i = 1, v = 8, which implies that $V_{Th} = 8 + R_{Th}$ (2)

From (1) and (2), $R_{Th} = 10$ ohms and $V_{Th} = 18$ V.

(a) When R = 4, $i = V_{Th}/(R + R_{Th}) = 18/(4 + 10) = 1.2857 A$

(b) For maximum power, $\underline{\mathbf{R}} = \underline{\mathbf{R}}_{\text{TH}}$

$$P_{\text{max}} = (V_{\text{Th}})^2 / 4R_{\text{Th}} = 18^2 / (4x10) = \frac{8.1 \text{ watts}}{(4x10)^2 + 10^2}$$
$$= i^2 R_{\text{Th}} = (0.9)^2 X 10 = 8.1 \text{ watts}$$

Grading criteria:No credit for final answers without R_{Th} , V_{Th} 2pts for showing equivalent circuit in the box (R_{Th} , V_{Th})3pts for correct i equation3pts for correct power equation showing $R = R_{Th}$

5pts for correct R_{Th} and V_{Th}

Problem 4:

If v_a and v_b are the voltages at the inverting and noninverting terminals of the op (a) amp.

 $v_a = v_b = 0$

(a)

Since $v_a = v_b = 1V$ and $i_a = 0$, no current flows through the 10 k Ω resistor. From Fig. (b),

 $-v_a + 2 + v_0 = 0$ \rightarrow $v_0 = v_a - 2 = 1 - 2 = -1V$

Grading criteria: 3 pts for correct Va and Vb for each question

5pts for correct KCL equation for (a) with wrong answer -3pts for wrong sign of final answer with correct steps

Problem 5:

 $C_{eq} = 3F / \! / \ 6F / \! / \ 4F = 3 {+} 6 {+} 4 {=} \ 13F$

Grading criteria: 3pts for showing parallel connection with wrong answer -3pts for calculation error

Problem 6:

$$L//L = 0.5L, L + L = 2L$$

$$L_{eq} = L + 2L / 0.5L = L + \frac{2Lx0.5L}{2L + 0.5L} = \underline{1.4L} = \underline{1.4L}.$$

Grading criteria: 3pts for showing correct connections with wrong answer -3pts for calculation error