Chapter 8, Solution 16.

At $\mathrm{t}=0, \mathrm{i}(0)=0, \mathrm{v}_{\mathrm{C}}(0)=40 \times 30 / 50=24 \mathrm{~V}$
For $\mathrm{t}>0$, we have a source-free RLC circuit.

$$
\begin{gathered}
\alpha=\mathrm{R} /(2 \mathrm{~L})=(40+60) / 5=20 \text { and } \omega_{0}=\frac{1}{\sqrt{\mathrm{LC}}}=\frac{1}{\sqrt{10^{-3} \mathrm{x} 2.5}}=20 \\
\omega_{0}=\alpha \text { leads to critical damping } \\
\mathrm{i}(\mathrm{t})=\left[(\mathrm{A}+\mathrm{Bt}) \mathrm{e}^{-20 \mathrm{t}}\right], \mathrm{i}(0)=0=\mathrm{A} \\
\mathrm{di} / \mathrm{dt}=\left\{\left[\mathrm{Be}^{-20 \mathrm{t}}\right]+\left[-20(\mathrm{Bt}) \mathrm{e}^{-20 \mathrm{t}}\right]\right\}, \\
\text { but di }(0) / \mathrm{dt}=-(1 / \mathrm{L})\left[\mathrm{Ri}(0)+\mathrm{v}_{\mathrm{C}}(0)\right]=-(1 / 2.5)[0+24] \\
\text { Hence, } \quad \mathrm{B}=-9.6 \text { or } \mathrm{i}(\mathrm{t})=\left[-\mathbf{9 . 6 t \mathrm { e } ^ { - 2 0 t }] \mathbf { A }}\right.
\end{gathered}
$$

Chapter 8, Solution 23.

Let $\mathrm{C}_{0}=\mathrm{C}+0.01$. For a parallel RLC circuit,

$$
\begin{gathered}
\alpha=1 /\left(2 \mathrm{RC}_{0}\right), \omega_{0}=1 / \sqrt{\mathrm{LC}_{0}} \\
\alpha=1=1 /\left(2 \mathrm{RC}_{0}\right), \text { we then have } \mathrm{C}_{0}=1 /(2 \mathrm{R})=1 / 20=50 \mathrm{mF} \\
\omega_{0}=1 / \sqrt{0.5 \times 0.5}=6.32>\alpha \text { (underdamped) } \\
\mathrm{C}_{0}=\mathrm{C}+10 \mathrm{mF}=50 \mathrm{mF} \text { or } \underline{\mathbf{4 0} \mathbf{~ m F}}
\end{gathered}
$$

Chapter 8, Solution 36.

For $\mathrm{t}=0-, 3 \mathrm{u}(\mathrm{t})=0$. Thus, $\mathrm{i}(0)=0$, and $\mathrm{v}(0)=20 \mathrm{~V}$.
For $\mathrm{t}>0$, we have the series RLC circuit shown below.

$$
\begin{gathered}
\text { (}=\mathrm{R} /(2 \mathrm{~L})=(2+5+1) /(2 \mathrm{x} 5)=0.8 \\
\omega_{0}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{5 \mathrm{x} 0.2}=1 \\
\mathrm{v}(\mathrm{t})=\mathrm{V}+\left[(\mathrm{Acos} 0.6 \mathrm{t}+\mathrm{B} \sin 0.6 \mathrm{t}) \mathrm{e}^{-0.8 \mathrm{t}}\right] \\
\mathrm{V}_{\mathrm{s}}=15+20=35 \mathrm{~V} \text { and } \mathrm{v}(0)=20=35+\mathrm{A} \text { or } \mathrm{A}=-15 \\
\mathrm{i}(0)=\operatorname{Cdv}(0) / \mathrm{dt}=0
\end{gathered}
$$

But dv/dt $=\left[-0.8(A \cos 0.6 t+B \sin 0.6 t) \mathrm{e}^{-0.8 t}\right]+\left[0.6(-A \sin 0.6 t+B \cos 0.6 t) \mathrm{e}^{-0.8 t}\right]$

$$
0=\operatorname{dv}(0) / \mathrm{dt}=-0.8 \mathrm{~A}+0.6 \mathrm{~B} \text { which leads to } \mathrm{B}=0.8 \mathrm{x}(-15) / 0.6=-20
$$

$$
\mathrm{v}(\mathrm{t})=\left\{35-\left[(15 \cos 0.6 \mathrm{t}+20 \sin 0.6 \mathrm{t}) \mathrm{e}^{-0.8 \mathrm{t}}\right]\right\} \mathbf{V}
$$

$\mathrm{i}=\mathrm{Cdv} / \mathrm{dt}=0.2\left\{\left[0.8(15 \cos 0.6 \mathrm{t}+20 \sin 0.6 \mathrm{t}) \mathrm{e}^{-0.8 t}\right]+\left[0.6(15 \sin 0.6 \mathrm{t}-20 \cos 0.6 \mathrm{t}) \mathrm{e}^{-0.8 t}\right]\right\}$

$$
\mathrm{i}(\mathrm{t})=\left[(5 \sin 0.6 \mathrm{t}) \mathrm{e}^{-0.8 \mathrm{t}}\right] \mathrm{A}
$$

Chapter 8, Solution 48.

For $\mathrm{t}=0$-, we obtain $\mathrm{i}(0)=-6 /(1+2)=-2$ and $\mathrm{v}(0)=2 \mathrm{x} 1=2$.
For $\mathrm{t}>0$, the voltage is short-circuited and we have a source-free parallel RLC circuit.

$$
\begin{gathered}
\alpha=1 /(2 \mathrm{RC})=(1) /(2 \times 1 \times 0.25)=2 \\
\omega_{0}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{1 \times 0.25}=2
\end{gathered}
$$

Since $\alpha=\omega_{0}$, we have a critically damped response.

$$
\mathrm{s}_{1,2}=-2
$$

Thus,

$$
\begin{gathered}
i(t)=\left[(A+B t) e^{-2 t}\right], \quad i(0)=-2=A \\
v=L d i / d t=\left[B e^{-2 t}\right]+\left[-2(-2+B t) e^{-2 t}\right] \\
v_{0}(0)=2=B+4 \text { or } B=-2 \\
\text { Thus, } i(t)=\left[(-2-2 t) e^{-2 t}\right] \mathbf{A} \\
\text { and } v(t)=\left[(2+4 t) e^{-2 t}\right] \mathbf{V}
\end{gathered}
$$

