EECS70A / CSE 70A Network Analysis I Prof. Peter Burke Homework # 2 solution

Chapter 2, Solution 1.

v = iR i = v/R = (16/5) mA = 3.2 mA

Chapter 2, Solution 3.

For silicon, $\rho = 6.4x10^2 \,\Omega$ -m. $A = \pi r^2$. Hence, $R = \frac{\rho L}{A} = \frac{\rho L}{\pi r^2} \longrightarrow r^2 = \frac{\rho L}{\pi R} = \frac{6.4x10^2 \,x4x10^{-2}}{\pi x240} = 0.033953$

r = <u>0.1843 m</u>

Chapter 2, Solution 5.

n = 9; l = 7; b = n+l-1 = <u>15</u>
Note: The loop should not have any internal loop and should be independent. From the figure of circuit, we need to count on only independent closed loops.

Chapter 2, Solution 9.

At A,	$2 + 12 = i_1$	\longrightarrow	$i_1 = \underline{14 A}$
At B,	$12 = i_2 + 14$	\longrightarrow	$i_2 = \underline{-2 A}$
At C,	$14 = 4 + i_3$	\longrightarrow	$i_3 = \underline{10 A}$

Chapter 2, Solution 12.

For loop 1,	$-20 - 25 + 10 + v_1 = 0 \longrightarrow$	$\underline{\mathbf{v}_1 = 35\mathbf{v}}$
For loop 2,	$-10 + 15 - v_2 = 0 \longrightarrow$	$\underline{\mathbf{v}}_2 = 5\mathbf{v}$
For loop 3,	$-\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 = 0 \longrightarrow$	$v_3 = 30v$

Chapter 2, Solution 18.

Applying KVL,

$$-30 - 10 + 8 + I(3+5) = 0$$

 $8I = 32 \longrightarrow I = \underline{4A}$
 $-V_{ab} + 5I + 8 = 0 \longrightarrow V_{ab} = \underline{28V}$

Chapter 2, Solution 43.

(a)
$$R_{ab} = 5 \left\| 20 + 10 \right\| 40 = \frac{5x20}{25} + \frac{400}{50} = 4 + 8 = 12 \Omega$$

(b) $60 \left\| 20 \right\| 30 = \left(\frac{1}{60} + \frac{1}{20} + \frac{1}{30} \right)^{-1} = \frac{60}{6} = 10\Omega$
 $R_{ab} = 80 \left\| (10 + 10) = \frac{80 + 20}{100} = 16 \Omega$

Chapter 2, Solution 45.

(a) 10//40 = 8, 20//30 = 12, 8//12 = 4.8

$$R_{ab} = 5 + 50 + 4.8 = 59.8\Omega$$

(b) 12 and 60 ohm resistors are in parallel. Hence, 12//60 = 10 ohm. This 10 ohm

and 20 ohm are in series to give 30 ohm. This is in parallel with 30 ohm to give 30//30 = 15 ohm. And 25//(15+10) = 12.5. Thus $R_{ab} = 5 + 12.8 + 15 = \underline{32.5\Omega}$