EECS70A / CSE 70A Network Analysis I
 Prof. Peter Burke

Homework \# 2 solution

Chapter 2, Solution 1.

$\mathrm{v}=\mathrm{iR} \quad \mathrm{i}=\mathrm{v} / \mathrm{R}=(16 / 5) \mathrm{mA}=\underline{3.2} \mathbf{~ m A}$

Chapter 2, Solution 3.

For silicon, $\quad \rho=6.4 \times 10^{2} \Omega-\mathrm{m} . \quad A=\pi r^{2}$. Hence,

$$
R=\frac{\rho L}{A}=\frac{\rho L}{\pi r^{2}} \quad \longrightarrow \quad r^{2}=\frac{\rho L}{\pi R}=\frac{6.4 \times 10^{2} \times 4 \times 10^{-2}}{\pi \times 240}=0.033953
$$

$$
\mathrm{r}=\underline{\mathbf{0} .1843 \mathrm{~m}}
$$

Chapter 2, Solution 5.

$$
\mathrm{n}=9 ; \quad l=7 ; \quad \mathbf{b}=\mathrm{n}+l-1=\underline{\mathbf{1 5}}
$$

Note: The loop should not have any internal loop and should be independent. From the figure of circuit, we need to count on only independent closed loops.

Chapter 2, Solution 9.

At A, $2+12=i_{1} \longrightarrow \quad i_{1}=\underline{14 \mathrm{~A}}$
At B, $\quad 12=i_{2}+14 \longrightarrow \quad i_{2}=\underline{-2 \mathrm{~A}}$
At C, $\quad 14=4+i_{3} \quad \longrightarrow \quad i_{3}=\underline{10 \mathrm{~A}}$

Chapter 2, Solution 12.

$$
\begin{aligned}
& \text { For loop 1, } \quad-20-25+10+\mathbf{v}_{1}=0 \longrightarrow \underline{\mathbf{v}}_{1}=\mathbf{3 5 v} \\
& \text { For loop 2, } \quad-10+15-\mathbf{v}_{2}=0 \longrightarrow \quad \underline{\mathbf{v}}_{2}=\mathbf{5} \mathbf{v} \\
& \text { For loop 3, } \quad-v_{1}+v_{2}+v_{3}=0 \longrightarrow \quad \underline{v}_{3}=30 \mathrm{v}
\end{aligned}
$$

Chapter 2, Solution 18.

Applying KVL,

$$
\begin{aligned}
& -30-10+8+\mathrm{I}(3+5)=0 \\
& 8 \mathrm{I}=32 \longrightarrow \\
& -\mathrm{V}_{\mathrm{ab}}+5 \mathrm{I}+8=0 \longrightarrow \\
& \mathrm{I}=\underline{\mathbf{4 A}} \quad \\
& \mathrm{V}_{\mathrm{ab}}=\underline{\mathbf{2 8 V} \mathbf{V}}
\end{aligned}
$$

Chapter 2, Solution 43.

(a) $\mathrm{R}_{\mathrm{ab}}=5\|20+10\| 40=\frac{5 \times 20}{25}+\frac{400}{50}=4+8=\underline{\mathbf{1 2} \Omega}$
(b) $60|20| 30=\left(\frac{1}{60}+\frac{1}{20}+\frac{1}{30}\right)^{-1}=\frac{60}{6}=10 \Omega$

$$
\mathrm{R}_{\mathrm{ab}}=80 \|(10+10)=\frac{80+20}{100}=\underline{\mathbf{1 6} \Omega}
$$

Chapter 2, Solution 45.

(a) $10 / / 40=8, \quad 20 / / 30=12, \quad 8 / / 12=4.8$

$$
R_{a b}=5+50+4.8=\underline{59.8 \Omega}
$$

(b) 12 and 60 ohm resistors are in parallel. Hence, $12 / / 60=10$ ohm. This 10 ohm
and 20 ohm are in series to give 30 ohm. This is in parallel with 30 ohm to give $30 / / 30=15$ ohm. And $25 / /(15+10)=12.5$. Thus
$R_{a b}=5+12.8+15=\underline{32.5 \Omega}$

