Chapter 7, Problem 4.

The switch in Fig. 7.84 moves instantaneously from A to B at $t=0$. Find v for $t>0$.

Figure 7.84
For Prob. 7.4.

Chapter 7, Problem 13.

In the circuit of Fig. 7.93,

$$
\begin{array}{ll}
v(t)=20 \mathrm{e}^{-10^{3} t} \mathrm{~V}, & t>0 \\
i(t)=4 \mathrm{e}^{-10^{3} t} \mathrm{~mA}, & t>0
\end{array}
$$

(a) Find R, L, and τ.
(b) Calculate the energy dissipated in the resistance for $0<t<0.5 \mathrm{~ms}$.

Figure 7.93
For Prob. 7.13.

Chapter 7, Problem 17.

Consider the circuit of Fig. 7.97. Find $v_{0}(t)$ if $i(0)=2 \mathrm{~A}$ and $v(t)=0$.

Figure 7.97
For Prob. 7.17.

Chapter 7, Problem 44.

The switch in Fig. 7.111 has been in position a for a long time. At $t=0$ it moves to position b. Calculate $i(t)$ for all $t>0$.

Figure 7.111
For Prob. 7.44.

Chapter 7, Problem 54.

Obtain the inductor current for both $t<0$ and $t>0$ in each of the circuits in Fig. 7.120.

(a)

(b)

Figure 7.120
For Prob. 7.54.

