Chapter 9, Problem 62.

For the circuit in Fig. 9.69, find the input impedance $\mathbf{Z}_{\text {in }}$ at $10 \mathrm{krad} / \mathrm{s}$.

Figure 9.69
For Prob. 9.62.

Chapter 9, Problem 67.

At $\omega=10^{3} \mathrm{rad} / \mathrm{s}$ find the input admittance of the circuits in Fig. 9.74a.

(a)

Chapter 9, Problem 68.

Determine $\mathbf{Y}_{\text {eq }}$ for the circuit in Fig. 9.75.

Figure 9.75
For Prob. 9.68.

Chapter 9, Problem 77.

Refer to the RC circuit in Fig. 9.81.
(a) Calculate the phase shift at 2 MHz .
(b) Find the frequency where the phase shift is 45°.

Figure 9.81
For Prob. 9.77.

Chapter 9, Problem 90.

An industrial coil is modeled as a series combination of an inductance L and resistance R, as shown in Fig. 9.90. Since an ac voltmeter measures only the magnitude of a sinusoid, the following measurements are taken at 60 Hz when the circuit operates in the steady state:

$$
\left|\mathbf{V}_{s}\right|=145 \mathrm{~V},\left|\mathbf{V}_{1}\right|=50 \mathrm{~V}, \quad\left|\mathbf{V}_{o}\right|=110 \mathrm{~V}
$$

Use these measurements to determine the values of L and R.

Figure 9.90
For Prob. 9.90.

Chapter 9, Problem 91.

Figure 9.91 shows a parallel combination of an inductance and a resistance. If it is desired to connect a capacitor in series with the parallel combination such that the net impedance is resistive at 10 MHz , what is the required value of C ?

Figure 9.91
For Prob. 9.91.

Chapter 9, Problem 92.

A transmission line has a series impedance of $\mathbf{Z}=100 \angle 75^{\circ} \Omega$ and a shunt admittance of $\mathbf{Y}=$ $450 \angle 48^{\circ} \mu$ S. Find: (a) the characteristic impedance $\mathbf{Z}_{o}=\sqrt{\mathbf{Z} / \mathbf{Y}}$
(b) the propagation constant $\gamma=\sqrt{\mathbf{Z Y}}$.

Chapter 9, Problem 93.

A power transmission system is modeled as shown in Fig. 9.92. Given the following;

Source voltage	$\mathbf{V}_{s}=115 \angle 0^{\circ} \mathrm{V}$,
Source impedance	$\mathbf{Z}_{s}=1+j 0.5 \Omega$,
Line impedance	$\mathbf{Z}_{\ell}=0.4+j 0.3 \Omega$,
Load impedance	$\mathbf{Z}_{L}=23.2+j 18.9 \Omega$,
find the load current	$\mathbf{I}_{L .}$

Figure 9.92
For Prob. 9.93.

Chapter 14, Problem 46.

For the network illustrated in Fig. 14.85, find
(a) the transfer function $\mathbf{H}(\omega)=\mathbf{V}_{o}(\omega) / \mathbf{I}(\omega)$,
(b) the magnitude of \mathbf{H} at $\omega_{o}=1 \mathrm{rad} / \mathrm{s}$.

Figure 14.85
For Probs. 14.46, 14.78, and 14.92.

Chapter 14, Problem 97.

The crossover circuit in Fig. 14.109 is a highpass filter that is connected to a tweeter. Determine the transfer function $\mathbf{H}(\omega)=\mathbf{V}_{o}(\omega) / \mathbf{V}_{i}(\omega)$.

Figure 14.109
For Prob. 14.97.

Chapter 14, Problem 98.

A certain electronic test circuit produced a resonant curve with half-power points at 432 Hz and 454 Hz . If $Q=20$, what is the resonant frequency of the circuit?

Chapter 14, Problem 100.

In a certain application, a simple $R C$ lowpass filter is designed to reduce high frequency noise. If the desired corner frequency is 20 kHz and $C=0.5 \mu \mathrm{~F}$ find the value of R.

Chapter 14, Problem 102.

Practical $R C$ filter design should allow for source and load resistances as shown in Fig. 14.110. Let $R=4 \mathrm{k} \Omega$ and $C=40-\mathrm{nF}$. Obtain the cutoff frequency when:
(a) $R_{s}=0, R_{L}=\infty$,
(b) $R_{s}=1 \mathrm{k} \Omega, R_{L}=5 \mathrm{k} \Omega$.

Figure 14.110
For Prob. 14.102.

Chapter 14, Problem 103.

The $R C$ circuit in Fig. 14.111 is used for a lead compensator in a system design. Obtain the transfer function of the circuit.

Figure 14.111
For Prob. 14.103.

