Chapter 8, Solution 17.

$$
\begin{aligned}
& \mathrm{i}(0)=\mathrm{I}_{0}=0, \mathrm{v}(0)=\mathrm{V}_{0}=4 \mathrm{x} 15=60 \\
& \frac{\mathrm{di}(0)}{\mathrm{dt}}=-\frac{1}{\mathrm{~L}}\left(\mathrm{RI}_{0}+\mathrm{V}_{0}\right)=-4(0+60)=-240 \\
& \omega_{0}=\frac{1}{\sqrt{\mathrm{LC}}}=\frac{1}{\sqrt{\frac{1}{4} \frac{1}{25}}}=10 \\
& \alpha=\frac{\mathrm{R}}{2 \mathrm{~L}}=\frac{10}{2 \frac{1}{4}}=20, \text { which is }>\omega_{0} . \\
& \mathrm{s}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}}=-20 \pm \sqrt{300}=-20 \pm 10 \sqrt{3}=-2.679,-37.32 \\
& \mathrm{i}(\mathrm{t})=\mathrm{A}_{1} \mathrm{e}^{-2.679 \mathrm{t}}+\mathrm{A}_{2} \mathrm{e}^{-37.32 \mathrm{t}} \\
& \mathrm{i}(0)=0=\mathrm{A}_{1}+\mathrm{A}_{2}, \frac{\mathrm{di}(0)}{\mathrm{dt}}=-2.679 \mathrm{~A}_{1}-37.32 \mathrm{~A}_{2}=-240 \\
& \text { This leadsto } \mathrm{A}_{1}=-6.928=-\mathrm{A}_{2} \\
& \mathrm{i}(\mathrm{t})=6.928\left(\mathrm{e}^{-37.32 \mathrm{t}}-\mathrm{e}^{-2.679 \mathrm{t}}\right) \\
& \text { Since, } \mathrm{v}(\mathrm{t})=\frac{1}{\mathrm{C}} \int_{0}^{\mathrm{t}} \mathrm{i}(\mathrm{t}) \mathrm{dt}+\text { const, and } \mathrm{v}(0)=60 \mathrm{~V}, \text { we get } \\
& \left.\quad \mathrm{v}(\mathrm{t})=\underline{\left(64.65 \mathrm{e}^{-2.679 t}\right.}-\mathbf{4 . 6 4 1 \mathrm { e } ^ { - 3 7 . 3 2 t }}\right) \mathrm{V}
\end{aligned}
$$

We note that $v(0)=60.009 \mathrm{~V}$ and not 60 V . This is due to rounding errors since $v(t)$ must go to zero as time goes to infinity. \{In other words, the constant of integration must be zero.

Chapter 8, Solution 24.

When the switch is in position A, the inductor acts like a short circuit so

$$
i\left(0^{-}\right)=4
$$

When the switch is in position B , we have a source-free parallel RCL circuit

$$
\begin{aligned}
& \alpha=\frac{1}{2 R C}=\frac{1}{2 \times 10 \times 10 \times 10^{-3}}=5 \\
& \omega_{o}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{\frac{1}{4} \times 10 \times 10^{-3}}}=20
\end{aligned}
$$

Since $\alpha<\omega_{0}$, we have an underdamped case.

$$
\begin{gathered}
\begin{array}{c}
s_{1,2}=-5+\sqrt{25-400}=-5+j 19.365 \\
i(t)=e^{-5 t}\left(A_{1} \cos 19.365 t+A_{2} \sin 19.365 t\right) \\
i(0)=4=A_{1} \\
v=L \frac{d i}{d t} \longrightarrow \frac{d i(0)}{d t}=\frac{v(0)}{L}=0 \\
\frac{d i}{d t}=e^{-5 t}\left(-5 A_{1} \cos 19.365 t-5 A_{2} \sin 19.365 t-19.365 A_{1} \sin 19.365 t+19.365 A_{2} \cos 19.365 t\right) \\
0=\frac{d i(0)}{d t}=-5 A_{1}+19.365 A_{2} \longrightarrow A_{2}=\frac{5 A_{1}}{19.365}=1.033 \\
i(t)=\underline{e^{-5 t}(4 \cos 19.365 t+1.033 \sin 19.365 t)}
\end{array} \\
\end{gathered}
$$

Chapter 8, Solution 34.

Before $t=0$, the capacitor acts like an open circuit while the inductor behaves like a short circuit.

$$
\mathrm{i}(0)=0, \mathrm{v}(0)=20 \mathrm{~V}
$$

For $\mathrm{t}>0$, the LC circuit is disconnected from the voltage source as shown below.

This is a lossless, source-free, series RLC circuit.

$$
\alpha=\mathrm{R} /(2 \mathrm{~L})=0, \omega_{\mathrm{o}}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{\frac{1}{16}+\frac{1}{4}}=8, \mathrm{~s}= \pm \mathrm{j} 8
$$

Since α is less than ω_{0}, we have an underdamped response. Therefore,

$$
\begin{gathered}
i(t)=A_{1} \cos 8 t+A_{2} \sin 8 t \text { where } i(0)=0=A_{1} \\
\operatorname{di}(0) / d t=(1 / L) v_{L}(0)=-(1 / L) v(0)=-4 \times 20=-80
\end{gathered}
$$

However, $\mathrm{di} / \mathrm{dt}=8 \mathrm{~A}_{2} \cos 8 \mathrm{t}$, thus, $\mathrm{di}(0) / \mathrm{dt}=-80=8 \mathrm{~A}_{2}$ which leads to $\mathrm{A}_{2}=-10$
Now we have

$$
i(t)=\underline{-10 \sin 8 t A}
$$

Chapter 8, Solution 47.

$$
\begin{gathered}
\text { At } t=0-\text {, we obtain, } \quad i_{L}(0)=3 \times 5 /(10+5)=1 \mathrm{~A} \\
\text { and } \mathrm{v}_{\mathrm{o}}(0)=0 .
\end{gathered}
$$

For $\mathrm{t}>0$, the 20 -ohm resistor is short-circuited and we have a parallel RLC circuit with a step input.

$$
\begin{gathered}
\alpha=1 /(2 \mathrm{RC})=(1) /(2 \times 5 \times 0.01)=10 \\
\omega_{\mathrm{o}}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{1 \times 0.01}=10
\end{gathered}
$$

Since $\alpha=\omega_{0}$, we have a critically damped response.

$$
\mathrm{s}_{1,2}=-10
$$

Thus,

$$
\begin{gathered}
i(t)=I_{s}+\left[(A+B t) e^{-10 t}\right], \quad I_{s}=3 \\
i(0)=1=3+A \text { or } A=-2 \\
\mathrm{v}_{\mathrm{o}}= \\
L d i / d t=\left[\mathrm{Be}^{-10 t}\right]+\left[-10(\mathrm{~A}+\mathrm{Bt}) \mathrm{e}^{-10 \mathrm{t}}\right] \\
\mathrm{v}_{\mathrm{o}}(0)=0=\mathrm{B}-10 \mathrm{~A} \text { or } \mathrm{B}=-20 \\
\text { Thus, } \mathrm{v}_{\mathrm{o}}(\mathrm{t})=\underline{\left(200 t \mathrm{e}^{-10 t}\right) \mathbf{V}}
\end{gathered}
$$

Chapter 8, Solution 57.
(a) Let $\mathrm{v}=$ capacitor voltage and $\mathrm{i}=$ inductor current. At $\mathrm{t}=0$-, the switch is closed and the circuit has reached steady-state.

$$
\mathrm{v}(0-)=16 \mathrm{~V} \text { and } \mathrm{i}(0-)=16 / 8=2 \mathrm{~A}
$$

At $\mathrm{t}=0+$, the switch is open but, $\mathrm{v}(0+)=16$ and $\mathrm{i}(0+)=2$.
We now have a source-free RLC circuit.

$$
\begin{gathered}
\mathrm{R} 8+12=20 \mathrm{ohms}, \mathrm{~L}=1 \mathrm{H}, \mathrm{C}=4 \mathrm{mF} \\
\alpha=\mathrm{R} /(2 \mathrm{~L})=(20) /(2 \mathrm{x} 1)=10 \\
\omega_{\mathrm{o}}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{1 \mathrm{x}(1 / 36)}=6
\end{gathered}
$$

Since $\alpha>\omega_{0}$, we have a overdamped response.

$$
\mathrm{s}_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{o}^{2}}=-18,-2
$$

Thus, the characteristic equation is $(s+2)(s+18)=0$ or $\underline{\mathbf{s}^{2}+\mathbf{2 0} \mathbf{s}+\mathbf{3 6}=\mathbf{0}}$.

$$
\begin{equation*}
\mathrm{i}(\mathrm{t})=\left[\mathrm{Ae}^{-2 \mathrm{t}}+\mathrm{Be}^{-18 \mathrm{t}}\right] \text { and } \mathrm{i}(0)=2=\mathrm{A}+\mathrm{B} \tag{b}
\end{equation*}
$$

To get $\operatorname{di}(0) / \mathrm{dt}$, consider the circuit below at $\mathrm{t}=0+$.

$-\mathrm{v}(0)+20 \mathrm{i}(0)+\mathrm{v}_{\mathrm{L}}(0)=0$, which leads to,

$$
-16+20 \times 2+v_{L}(0)=0 \text { or } v_{L}(0)=-24
$$

$\operatorname{Ldi}(0) / \mathrm{dt}=\mathrm{v}_{\mathrm{L}}(0)$ which gives $\operatorname{di}(0) / \mathrm{dt}=\mathrm{v}_{\mathrm{L}}(0) / \mathrm{L}=-24 / 1=-24 \mathrm{~A} / \mathrm{s}$

$$
\begin{equation*}
\text { Hence }-24=-2 \mathrm{~A}-18 \mathrm{~B} \text { or } 12=\mathrm{A}+9 \mathrm{~B} \tag{2}
\end{equation*}
$$

From (1) and (2),

$$
\mathrm{B}=1.25 \text { and } \mathrm{A}=0.75
$$

$$
\begin{gathered}
i(t)=\left[0.75 e^{-2 t}+1.25 e^{-18 t}\right]=-i_{x}(t) \text { or } i_{x}(t)=\left[-\mathbf{0 . 7 5} e^{-2 t}-\mathbf{1 . 2 5} e^{-18 t}\right] \mathbf{A} \\
v(t)=8 i(t)=\left[6 e^{-2 t}+\mathbf{1 0} e^{-18 t}\right] \mathbf{A}
\end{gathered}
$$

