RF CMOS

EECS 277A Fall 2010

EECS277A © P.J. Burke, Fall 2010

Last modified 11/11/2010 2:51 PM

Slide #1

Rules for ac analysis

- From complete circuit, calculate dc currents and voltages
- For ac analysis only:
 - dc voltage source -> short circuit
 - dc current source -> open circuit
- Replace transistor with π or T-model
- Now solve (simplified) ac circuit

Next

- Generalized y-parameters
- not just common emitters
- Capacitances
- y-parameters from doping profile
- Definition of f_T

General admittance matrix

Last lecture, we had emitter grounded. Called common emitter configuration:

Y-matrix has 9 elements, but once you know 4 you know them all because:

Three configurations:

Common emitter configuration ($v_e=0$):

$$\begin{pmatrix} i_b \\ i_c \end{pmatrix} = \begin{pmatrix} y_{bb} & y_{bc} \\ y_{cb} & y_{cc} \end{pmatrix} \begin{pmatrix} v_b \\ v_c \end{pmatrix} = \begin{bmatrix} y \end{bmatrix}_e \begin{pmatrix} v_b \\ v_c \end{pmatrix}$$

Common base configuration ($v_b=0$):

$$\begin{pmatrix} i_e \\ i_c \end{pmatrix} = \begin{pmatrix} y_{ee} & y_{ec} \\ y_{ce} & y_{cc} \end{pmatrix} \begin{pmatrix} v_e \\ v_c \end{pmatrix} = \begin{bmatrix} y \end{bmatrix}_b \begin{pmatrix} v_e \\ v_c \end{pmatrix}$$

Common collector configuration ($v_c=0$):

Easiest to calculate from doping profile.

Generalized π model:

Regardless of which configuration you use, the following π model applies:

$$\begin{pmatrix} i_1 \\ i_2 \end{pmatrix} = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

You might be used to V=IR

EECS277A © P.J. Burke, Fall 2010

h matrix:

 $\begin{pmatrix} v_1 \\ i_2 \end{pmatrix} = \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix} \begin{pmatrix} i_1 \\ v_2 \end{pmatrix}$

Common emitter: 1=base, 2=collector Common base: 1=emitter, 2=collector Common collector: 1=base, 2= emitter

Note: In general, matrix elements depend on dc currents, dc voltages, and frequency. Spec. sheet (or model) will provide the matrix elements as a table vs. frequency, usually for only one bias current. Common emitter h matrix:

$$\begin{pmatrix} v_b \\ i_c \end{pmatrix} = \begin{pmatrix} h_{11e} & h_{12e} \\ h_{21e} & h_{22e} \end{pmatrix} \begin{pmatrix} i_b \\ v_c \end{pmatrix}$$

- Early effect: Collector voltage changes current gain (β).
- β depends on frequency *and* collector voltage.
- How do we define frequency at which $\beta = 1$?
- At $v_c=0$. This is h_{21e}

$$i_c = h_{21e}i_b + h_{22e}v_c \rightarrow h_{21e}i_b$$

• We define f_T such that:

$$\left|h_{21e}\right|(f_T)=1$$

EECS277A © P.J. Burke, Fall 2010

S-parameters

This is what you see on data sheets. Related to input impedance, output impedance and gain vs. frequency. => Need to discuss ac performance.

Summary of parameters

- Impedance matrix (V=IR -> V=IZ)
- Admittance matrix (I=YV)
- h-matrix (combination)
- ABCD matrix (combination)
- S-matrix (microwave reflections and transmissions)

"If you know one, then you know them all..." See Liu, page 249 for conversions.

Measurement techniques

Measurement techniques

Cost (rough estimates)

- 10 GHz: \$50,000
- 20 GHz: \$70,000
- 40 GHz: \$90,000
- 110 GHz: \$250,000
- > 110 GHz: very expensive

For cost and difficulty reasons, parameters of transistor not always measure all the way up to f_T , but extrapolated.

These are only estimates. Contact vendor for actual prices.

EECS277A © P.J. Burke, Fall 2010

Last modified 11/11/2010 2:51 PM

When current flowing through capacitor is $equal_m t Q_s$

then the frequency is f_T .

$$i_{g} = v_{gs} (\omega C_{gs}) \qquad i_{d} = g_{M} v_{gs}$$

At f_T $g_{M} v_{gs} = v_{gs} (\omega_{T} C_{gs})$
 $\Rightarrow \omega_{T} = \frac{g_{M}}{C_{gs}} \Rightarrow f_{T} = \frac{g_{M}}{2\pi C_{gs}}$

$$f_T = \frac{g_M}{2\pi C_{gs}}$$

In HW#6, you will prove for the long-channel device

$$g_{M} = \frac{W\mu C_{ox}}{L} (V_{GS} - V_{T})$$
$$C_{ox} \sim C_{gs} / (LW)$$
$$1 - \mu (V - V_{T})$$

$$f_T \to \frac{1}{2\pi} \frac{\mu (V_{GS} - V_T)}{L^2}$$

Note: (Intrinsic) In saturation, $C_{gs} = (2/3) C_{ox} WL$ $C_{gd} = 0$ $C_{sd} = 0$

For a short-channel device,

$$g_M = v_{sat} W C'_{ox}$$

$$f_T \to \frac{v_{sat}}{2\pi L} = \frac{1}{2\pi \tau_{tr}}$$

So book model is only good for frequencies much less than f_T .

EECS277A © P.J. Burke, Fall 2010

max

In real circuits, we do not want to short circuit the output! Unilateral power gain: if impedance matching network is set up so that there is no reverse transmission ($S_{12}=0$), in that case the power gain is called the *unilateral power gain*. "It can be shown that..."

$$U = \frac{|z_{21} - z_{12}|^2}{4[\operatorname{Re}(z_{11})\operatorname{Re}(z_{22}) - \operatorname{Re}(z_{12})\operatorname{Re}(z_{21})]}$$

"It can be shown that..."

$$f_{\rm max} = \sqrt{\frac{f_T}{8\pi r_g C_{gd}}}$$

Note r_{gate}dependence.

OR:

$$f_{\max} = \frac{1}{2} f_T \sqrt{\frac{r_o}{r_g}}$$

EECS277A © P.J. Burke, Fall 2010

f_{MAX}

$$f_{MAX} = \sqrt{\frac{f_T}{8\pi R_G C_{gd,t}} \left[1 + \left(\frac{2\pi f_T}{C_{gd,t}}\right) \Psi \right]}$$

$$\Psi \equiv (R_{s} + R_{D}) \frac{C_{gg,t}^{2} g_{d}^{2}}{g_{m}^{2}} + (R_{s} + R_{D}) \frac{C_{gd,t} C_{gg,t} g_{d}}{g_{m}} + \frac{C_{gg,t}^{2} g_{d}}{g_{m}^{2}}$$

 f_{max} helped by fingers. f_{T} not helped by fingers. fMax sometimes larger, sometimes smaller than f_{T} .

Example

Fig. 14. Gains of a $0.4 \,\mu\text{m} \times 6 \,\mu\text{m}$ emitter and $0.7 \,\mu\text{m} \times 10 \,\mu\text{m}$ collector HBT fabricated using electron-beam lithography. Theoretical $-20 \,\text{dB/decade} (H_{21}, U)$ gain slopes are indicated. The device exhibits an *extrapolated* 1.08 THz f_{max} .

From Rodwell, et al, TRANSACTIONS ON ELECTRON DEVICES 48 (11): 2606-2624 IEEE NOV 2001

EECS277A © P.J. Burke, Fall 2010

Last modified 11/11/2010 2:51 PM

RF/AMS

Table RFAMS1RF and Analog Mixed-SignalCMOS Technology Requirements

·																	
'e	ar of Production	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
^{o}e	rformance RF/Analog [1]																
	upply voltage (V) [2]	1.1	1.05	1.05	1.05	1	0.95	0.95	0.95	0.85	0.85	0.85	0.85	0.75	0.75	0.75	0.75
	T_{ox} (nm) [2]	1.2	1.2	1.2	1.2	1.10	1.10	1.10	1.10	1.10	1.00	1.00	0.90	0.90	0.80	0.80	0.70
	Gate Length (nm) [2]	38	38	32	29	27	22	18	17	15	14	13	12	11	9.7	8.9	8.1
	$g_{\rm m}/g_{\rm ds}$ at 5·L _{min-digital} [3]	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
	$1/f$ -noise ($\mu V^2 \cdot \mu m^2/Hz$) [4]	100	90	80	70	70	60	50	50	40	40	40	30	30	30	20	20
	σV_{th} matching (mV·µm) [5]	5	5	5	5	5	5	5	5	5	5	5	4	4	4	4	4
	I _{ds} (μΑ/μm) [6]	9	9	8	7	7	6	5	4	4	3	3	3	2	2	2	2
	Peak F _t (GHz) [7]	240	240	280	310	340	400	480	520	570	630	680	750	820	890	970	1060
	Peak F _{max} (GHz) [8]	290	290	340	380	420	510	610	670	740	820	900	990	1090	1200	1320	1450
	NF_{min} (dB) [9]	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Pr	ecision Analog/RF Driver [1]																
1	upply voltage (V)	2.5	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.5	1.5	1.5	1.5	1.5	1.5
	<u>T_{ox} (nm) [10]</u>	5	3	3	3	3	3	3	3	3	3	2.6	2.6	2.6	2.6	2.6	2.6
	Gate Length (nm) [10]	250	180	180	180	180	180	180	180	180	180	130	130	130	130	130	13 <mark>0</mark>
	g_m/g_{ds} at $10 \cdot L_{min-digital}$ [11]	220	160	160	160	160	160	160	160	160	160	110	110	110	110	110	110
	$1/f$ Noise ($\mu V^2 \cdot \mu m^2/Hz$) [4]	1000	360	360	360	360	360	360	360	360	360	270	270	270	270	270	270
	σV_{th} matching (mV·µm)	9	6	6	6	6	6	6	6	6	6	5	5	5	5	5	5
5																	
	Peak F_t (GHz) [7]	40	50	50	50	50	50	50	50	50	50	70	70	70	70	70	70
	Peak F _{max} (GHz) [8]	70	90	90	90	90	90	90	90	90	90	120	120	120	120	120	120
74	ailability of optional analog /	limite	limite	com	com												
11	gh-voltage FETs	d	d	mon	mon	wide	wide	wide	wide	wide	wide	wide	wide	wide	wide	wide	wide
			switch														
								tO									
	EECS277A ©	P.J. Burk	e, Fall 2	010		Last modified 11/11/2010 2:51 PM						Slide # 29					
		1	· ·		L			r i or									

Fig. 1. Evolution of the record cutoff frequency $f_{\rm T}$ and the record maximum frequency of oscillation $f_{\rm max}$ of RF Si MOSFETs versus time. F. Schwierz and J. J. Liou, "RF Transistors: Recent Developments and Roadmap toward Terahertz Applications", *Solid-State Electronics*, 51, 1079-1091, (2007).

EECS277A © P.J. Burke, Fall 2010

Last modified 11/11/2010 2:51 PM

EECS277A © P.J. Burke, Fall 2010

Last modified 11/11/2010 2:51 PM