4/13/2010 8:00 to 9:20 am Professor Peter Burke

Name:_	Solutions	
ID no.:_		

1	2	3	4	Total
/20	/35	/25	/20	/100

DO NOT BEGIN THE EXAM UNTIL YOU ARE TOLD TO DO SO.

Name:

4/13/2010 8:00 to 9:20 am Professor Peter Burke

PROBLEM ONE: (20 points)

Solve for Req.

ID no.:_

Name:____

4/13/2010 8:00 to 9:20 am Professor Peter Burke ID no.:_____

PROBLEM TWO(35 points):

Find V₁ through V₄ and i₁ through i₃ in the circuit below.

$$i_1 + i_2 + i_3 = 0$$

 $i_1 + 5A + -7A = 0$
 $i_1 = 2A$
 $i_2 = 5A$
 $i_3 = -7A$

$$V = IR$$
 $V_1: 5A \cdot 2R = 10V$
 $V_2: 2A \cdot 5R = 10V$
 $V_3: -7A \cdot 6\Omega = -42V$
 $V_4: 5A \cdot 3\Omega = 15V$

Name:

ID no .:

4/13/2010 8:00 to 9:20 am

Professor Peter Burke

PROBLEM THREE(25 points):

Find V_1 , V_2 , i_1 , and i_2 . Be careful about the sign!

$$|A + 2A + 4A + 8A = i_2$$

 $|i_2 = 15A|$

KCL@ node b:

$$i_2 = 5i_0 + 13A + i_1$$

$$-3A = i_1$$

$$V_{i} = Ik\Omega \cdot i_{i} = Ik\Omega \cdot (-3A)$$

$$= -3kV$$

$$=-3kV$$

Name:____

4/13/2010 8:00 to 9:20 am Professor Peter Burke ID no.:____

PROBLEM FOUR(20 points):

In the circuit below, the wiper divides the potentiometer resistance between a 5 Ω and (1- α) 5 Ω , where $0<\alpha<1$. Find the power dissipated in the 10 Ω resistor as a function of α .

Power Dissipation:
$$P = IV = I^2 \cdot R$$

$$I = \frac{V}{R} = \frac{10V}{10x + (1-q)5x}$$

$$P = I^{2} \cdot R$$

$$P_{100} = \left(\frac{10V}{10R + (1-4)5S}\right)^{2} \cdot 10S$$
where $0 < 9 < 1$