EECS 70A: Network Analysis

$$
\begin{gathered}
\text { Homework \#3 } \\
\text { Due in discussion section, } \\
\text { Wednesday, May 5, } 2010 .
\end{gathered}
$$

Problem 1:

Problem ${ }^{1}$)
(1) Define the reference rode
you can choose any of the 4 nodes for the reference, if you choose mode 1 on 3, one of the terminals of the wattage source is grounded and analysis will be easier. If you have chosen a reference other than node 1, your node voltage values might be different than this solution, but you should still get the same voltage drop across all elements and the same values for all currents.
There are 3 unknowns: v_{2}, v_{3} and $v_{4} \Rightarrow$ We need 3 independent equations.
(2) Apply kcl . Ohm's law to nodes:
(e) node 4 :

$$
\left.\begin{array}{rl}
\frac{V_{4}-V_{3}}{10}+\frac{V_{4}-V_{1}}{10}+4 V_{0}=0 \\
V_{0}=V_{3}-V_{4}
\end{array}\right\} \begin{aligned}
& \underline{V_{4}}-\underline{V_{3}}+\underline{V_{4}}+4\left(\underline{V_{3}}-\underline{V_{4}}\right)=0 \\
& V_{3}(-1+4)+V_{4}(1+1-4)=0 \\
& \\
&
\end{aligned}
$$

(a) node 2: $\left.\frac{V_{2}-V_{1}}{200}-\frac{1}{7} A=0\right\} \Rightarrow V_{2}=\frac{2}{7} \vee$ (eq.2)
(3) Apply KVL to voltage source: $v_{3}=b v$ (eq. 3)
(4) Now that we have the 3 equations, solve them for v_{2}, v_{3} and V_{4} : v. Plug v_{3} in equation 1: $3(b v)-2 v_{4}=0$

$$
\left\{\begin{array}{l}
v_{2}=\frac{2}{7} v \\
v_{3}=6 v \\
v_{4}=9 v
\end{array}\right.
$$

Prob. 1

- Find $2 x$.

To find ix, write a ked at node 3:
$\frac{1}{7} A+\frac{\sqrt{3}}{70}+i_{2}+\frac{V_{3}-V_{4}}{10}-4 V 0=0$
$\frac{1}{4}+\frac{6 x}{x}+i n+\frac{6 x-9 v}{1 \Omega}-4\left[\frac{6}{v}\right](6 v-9 x)=0$
$1 A+1 x-3 A+12 A=0$
$i x=-10 \quad n$

Problem 2: Solve for node voltages.

Problem 2)
v_{1}, v_{2}, v_{3} and v_{4} are the unknowns \Rightarrow We have to write 4 independent equations
at node $1: \quad V=80 \quad$ (eq. 1)
$K a+$ Ohm@ node: $\quad \frac{V_{2}-V_{1}}{1 \Omega}+\frac{V_{2}}{4 \Omega}+\frac{V_{2}-V_{3}}{4 a}+2 A=0$

$$
x_{4}\left(\begin{array}{l}
-v_{1}+v_{2}\left(1+\frac{1}{4}+\frac{1}{4}\right)-\frac{v_{3}}{4}=-2 \\
-4 v_{1}+b v_{2}-v_{3}=-8 \quad(e q, 2)
\end{array}\right.
$$

$$
\begin{aligned}
& \mathrm{KCl}+\text { Ohm@rode 3: } \quad \frac{v_{3}-v_{4}}{7 \Omega}+\frac{v_{3}-v_{2}}{4 \Omega}+\frac{v_{3}}{2 \Omega}-2 A=0 \\
& \times 28\left(\begin{array}{l}
\frac{-V_{2}}{4 \Omega}+V_{3}\left(\frac{1}{7 n}+\frac{1}{4 a}+\frac{1}{2 \Omega}\right)-\frac{V_{4}}{7 a}=2 A \\
1-7 V_{2}+25 V_{3}-4 V_{4}=56 \quad \text { (eq. 3) }
\end{array}\right.
\end{aligned}
$$

KU for the VCVS: $\left.\begin{array}{l}V_{1}-V_{4}=V_{0} \\ V_{0}=V_{2}\end{array}\right\} \Rightarrow V_{1}-V_{4}=V_{2} \rightarrow V_{1}-V_{2}-V_{4}=0$ (eq. 4)

Replace $V_{1}=8 v$ in eq. 2 \& eq. 4 B

$$
\begin{aligned}
& \left(\text { eq. 2) } \rightarrow-4 \times 8+b v_{2}-v_{3}=-8 \Rightarrow 6 v_{2}-v_{3}=24 \quad(\text { eq } 2 k)\right. \\
& (\text { eq. } 4) \rightarrow v_{3}-v_{2}-v_{4}=0 \rightarrow 8-v_{2}-v_{4}=0 \Rightarrow v_{2}+v_{4}=8 v \quad(\text { eq } 4 k)
\end{aligned}
$$

(Prob. 2)
Solve equations $4 k, 2 k$ and 3 using Comer's method:

$$
\begin{aligned}
& \text { (eq } 4 x \text {) } \\
& \Delta=\left|\begin{array}{ccc}
1 & 0 & 1 \\
b & -1 & 0 \\
-7 & 25 & -4
\end{array}\right|=4 x\left|\begin{array}{cc}
-1 & 0 \\
-4 & -4
\end{array}\right|+0 \times\left.\right|_{-7} ^{b} \quad 04+1 \times\left|\begin{array}{cc}
b & -1 \\
7 & 25
\end{array}\right| \\
& =1 \times(4-0)+0+1 \times(6 \times 25-7)=147 \\
& \Delta_{1}=\left|\begin{array}{ccc}
8 & 0 & 1 \\
24 & 1 & 0 \\
56 & 25 & -4
\end{array}\right|=688 \\
& \Delta_{2}=\left|\begin{array}{ccc}
1 & 8 & 1 \\
6 & 24 & 0 \\
7 & 56 & -4
\end{array}\right|=600 \\
& \Delta_{3}=\left|\begin{array}{ccc}
1 & 0 & 8 \\
6 & -1 & 24 \\
-7 & 25 & 56
\end{array}\right|=488 \\
& v_{2}=\frac{\Delta_{1}}{\Delta}=\frac{688}{147}=4.68 \mathrm{v} \\
& V_{3}=\frac{\Delta_{2}}{\Delta}=\frac{600}{147}=4.08 \mathrm{v} \\
& V_{4}=\frac{\Delta_{3}}{\Delta}=\frac{488}{147}=3.319 \mathrm{~V}
\end{aligned}
$$

Problem 3:

-Use nodal analysis to find node voltages.
-Find the power supplied by the independent current source.

(Prob 3)

Write equations $2 *, 3 k 84$ in matrix form:

$$
\begin{aligned}
& 34\left[\begin{array}{ccc}
1 & -2 & 0 \\
0 & 11 & -5 \\
1 & 2 & -5
\end{array}\right]\left[\begin{array}{l}
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{c}
-20 \\
20 \\
6
\end{array}\right] \\
& \Delta=\left|\begin{array}{ccc}
1 & -2 & 0 \\
0 & 11 & -5 \\
1 & 2 & -5
\end{array}\right|=-35 \\
& \Delta_{1}=\left|\begin{array}{ccc}
-20 & -2 & 0 \\
20 & 11 & -5 \\
6 & 2 & -5
\end{array}\right|=760 \\
& \Delta 2=\left|\begin{array}{ccc}
1 & -20 & 0 \\
0 & 20 & -5 \\
1 & 6 & -5
\end{array}\right|=30 \quad \Delta 3=\left|\begin{array}{ccc}
1 & -2 & -20 \\
0 & 11 & 20 \\
1 & 2 & b
\end{array}\right|=206 \\
& v_{2}=\frac{\Delta_{1}}{\Delta}=\frac{760}{-35}=-217 * \\
& V_{s}=\frac{\Delta_{2}}{\Delta}=\frac{30}{-35}=-0.857 v \\
& V_{4}=\frac{\Delta 3}{\Delta}=\frac{206}{-35}=-5.88 \mathrm{v}
\end{aligned}
$$

Find the current supplied by the VCCS:

$$
\begin{aligned}
& P=V_{x} I=V_{0}\left(-3 / 2 V_{x}\right) \\
& V_{0}=V_{1}-V_{3}=10-(-0.87)=10.857 \mathrm{v} \\
& V_{x}=V_{4}-V_{3}=-5.88-(-0.857)=-5.03 \mathrm{v} \\
& P=(10.857)\left(-\frac{3}{2} x-5.03\right)=81.91 \mathrm{~W}
\end{aligned}
$$

Problem 3)
(a) node 1: $V_{1}=10 \mathrm{~V}$ ieq.1)
@node2:

$$
\left.\begin{array}{l}
v_{2}=-2 v_{0} \tag{eq.2}\\
v_{0}=v_{1}-v_{3}
\end{array}\right\} \Rightarrow v_{2}=-2\left(v_{1}-v_{3}\right) \rightarrow-2 v_{1}-v_{2}+2 v_{3}=0
$$

KCl.Ohm@node3:

$$
\left.\begin{array}{l}
-\frac{3}{2} v_{x}+\frac{v_{3}-v_{1}}{10}+\frac{v_{3}-v_{4}}{100}+\frac{v_{3}}{0.500}=0 \\
v_{x}=v_{4}-v_{3}
\end{array}\right\} \Rightarrow-v_{1}+v_{3}\left(\frac{3}{2}+1+1+2\right)-v_{4}\left(\frac{3}{2}+1\right)=0
$$

kCl.+Ohm@node4:

$$
\begin{aligned}
& \frac{V_{4}-V_{3}}{120}+\frac{V_{4}}{1_{2}}+\frac{V_{4}-V_{2}}{200}+3 A=0 \\
& -\frac{V_{2}}{208}-\frac{V_{2}}{12}+V_{4}\left(\frac{1}{12}+\frac{1}{12}+\frac{1}{202}\right)=-3 A \Rightarrow-\frac{V_{2}}{2}-V_{3}+\frac{5}{2} V_{4}=-3 \\
&
\end{aligned}
$$

Replace equation $1\left(v_{1}=10 \mathrm{v}\right)$ in eq. 3 and eq.2\%
eq.2: $\quad-2 \times 10-v_{2}+2 v_{3}=0 \quad \rightarrow \quad v_{2}-2 V_{3}=-20 \quad\left(e^{2}+1\right)$
eq. 3: $\quad-2 \times 10+11 v_{3}-5 v_{4}=0 \rightarrow 11 v_{3}-5 V_{4}=20(e q 3 k)$

Problem 4: Write the node-voltage equations and put them in matrix form.

Problem 4) 5 unknowns \Rightarrow need 5 equations

KCL.Ohm@ node 2:

$$
\begin{gathered}
G_{2} V_{2}+G_{3}\left(V_{2}-V_{1}\right)+G_{10}\left(V_{2}-V_{3}\right)+\alpha V_{1}=0 \\
\left(\alpha-G_{3}\right) V_{1}+\left(G_{22}+G_{3}+G_{10}\right) V_{2}-G_{10} V_{3}=0 \quad \text { (eq. 1) }
\end{gathered}
$$

KCl+Ohm@node 5:

$$
\begin{aligned}
& G_{9} V_{5}+G_{6}\left(V_{5}-V_{4}\right)+G_{5}\left(V_{5}-V_{3}\right)-\alpha V_{1}=0 \\
& -\alpha V_{1}-G_{5} V_{3}-G_{6} V_{4}+\left(G_{9}+G_{6}+G_{5}\right) V_{5}=0 \quad \text { (eq.2) }
\end{aligned}
$$

$\mathrm{KCl}+$ Ohm@ supernode:

$$
\begin{aligned}
& \overbrace{G_{1} V_{1}+G_{73}\left(V_{1}-V_{2}\right)}^{\text {node }}+\overbrace{G_{10}\left(V_{3}-V_{2}\right)+G_{5}\left(V_{3}-V_{5}\right)+G_{7}\left(V_{3}-V_{4}\right)+\underbrace{\begin{array}{l}
G_{7}\left(V_{4}-V_{3}\right)
\end{array}} \begin{array}{l}
\text { node 3 } \\
\text { the been part of }
\end{array}}^{\begin{array}{l}
\text { nopernode. }
\end{array}} \begin{array}{l}
\text { node } 46\left(V_{4}-V_{5}\right)+G_{8} V_{4}=0 \\
\left(G_{1}+G_{3}\right) V_{1}+V_{2}\left(-G_{3}-G_{10}\right)+V_{3}\left(G_{10}+G_{5}\right)+V_{4}\left(G_{6}+G_{8}\right)+V_{5}\left(-G_{5}-C_{6}\right)=0 \quad \text { (eq.3) }
\end{array}
\end{aligned}
$$

We still need 2 more equations \Rightarrow write 2 KVLS at the supernode:

$$
\left.\begin{array}{l}
V_{4}-V_{1}=V_{5}(\mathrm{eq} \cdot 4) \\
V_{1}-V_{3}=\beta i_{x} \\
i_{x}=-G_{9} V_{5}
\end{array}\right\} \Rightarrow V_{1}-V_{3}=-G_{9} \beta V_{5} \Rightarrow v_{1}-V_{3}+G_{9} \beta V_{5}=0 \quad \text { (eq.5) }
$$

(Prob. 4)
Now write the equations in matrix form:

Problem 5: Solve for mesh currents.

Problem 5)

$$
\begin{aligned}
\text { KNL@Mesh1: } & -5+\left(11_{2}\right)\left(i_{1}\right)+(200)\left(i_{1}-i_{2}\right)=0 \\
& i_{1}(1+2)-2 i_{2}=5 \\
& 3 i_{1}-2 i_{2}=5 \text { (eq1) }
\end{aligned}
$$

$\left.\begin{array}{r}\text { KVL@mesh2: } 2\left(i_{2}-i_{1}\right)+2 V_{0}+7\left(i_{2}-i_{3}\right) \\ \left.V_{0}=(10)\right)\left(-i_{1}\right)=-i_{1}\end{array}\right\} \Rightarrow 4 i_{1}+9 i_{2}-7 i_{3}=0 \quad(e q-2)$

Ku@mash:

$$
\left.\begin{array}{l}
-2 v_{0}+2 i_{3}+7\left(i_{3}-i_{2}\right)=0 \\
v_{0}=-i_{1}
\end{array}\right\} \Rightarrow 2 i_{1}-7 i_{2}+i_{3}=0 \quad(\text { eq.3 })
$$

$\operatorname{eqn}_{\text {eq3 }} \operatorname{eq}^{2}\left[\begin{array}{ccc}3 & -2 & 0 \\ -4 & 9 & -7 \\ 2 & -7 & 9\end{array}\right]\left[\begin{array}{l}i_{1} \\ i_{2} \\ i_{3}\end{array}\right]=\left[\begin{array}{l}5 \\ 0 \\ 0\end{array}\right]$

$$
\begin{aligned}
& \Delta=52 \\
& \Delta_{1}=160 \\
& \Delta_{2}=110 \\
& \Delta_{3}=50
\end{aligned}
$$

$$
\begin{aligned}
& i_{1}=\frac{\Delta_{1}}{\Delta}=\frac{160}{52}=3.077 \mathrm{~A} \\
& i_{2}=\frac{\Delta_{2}}{\Delta}=\frac{110}{52}=2.12 \mathrm{~A} \\
& i_{3}=\frac{\Delta_{3}}{\Delta}=\frac{50}{52}=0.96 \mathrm{~A}
\end{aligned}
$$

Problem 6:

-Obtain mesh currents i_{1} through i_{3} (in terms of α).

- Find the total power dissipated in R_{1}, R_{2} and $R_{3}(P 1+P 2+P 3$ in terms of $\alpha)$.

Problem6)
kll@mesht

$$
\begin{aligned}
& -10+10(1-\alpha)\left(i_{1}-i_{2}\right)+10 \alpha\left(i_{1}-13\right)=0 \\
& 10 i_{1}-10(1-\alpha) i_{2}-10 \alpha_{3}=10 \stackrel{10}{\rightarrow} \quad i_{1}+\left(\alpha_{-1}\right) i_{2}-\alpha i_{3}=1 \quad(e q .1)
\end{aligned}
$$

Kll (O) mesh2:

$$
\begin{align*}
& -V^{6}+4 i_{2}+V_{x}+\overrightarrow{R e q}_{2} i_{2}+20 i_{1}+5\left(i_{2}-i_{3}\right)=0 \\
& 20 i_{1}+(4+1+5) i_{2}-5 i_{3}=0 \\
& 20 i_{1}+10 i_{2}-5 i_{3}=0 \quad+5 \rightarrow 4 i_{1}+2 i_{2}-i_{3}=0 \tag{eq.2}
\end{align*}
$$

(a) mesh $3: i 3=-10 \mathrm{~A}$
replace is by(-10) in eq.1 \& eq.2:

$$
\begin{aligned}
& \text { eq. } \left.1 \rightarrow i_{1}+(\alpha-1) i_{2}-10 \alpha=1 \Rightarrow i_{1}+(\alpha-1) i_{2}=1+10 \alpha \quad \text { (eq } 1+1\right) \\
& e q .2 \rightarrow 4 i+2 i 2-10=0 \quad 2 \quad 2 i_{1}+i_{2}=5 \quad(e q .2 k) \\
& \left\{\begin{array}{l}
i_{1}+(\alpha-1) i_{2}=1+10 \alpha \\
2 i_{1}+i_{2}=5
\end{array} \stackrel{i_{2}}{\rightarrow}\left\{\begin{array}{l}
2 i_{1}+2(\alpha-1) i_{2}=2+20 \alpha \\
2 i_{1}+i_{2}=5
\end{array}\right] \begin{array}{l}
2(\alpha-1) i_{2}-i_{2}=2+20 \alpha-5
\end{array}\right. \\
& \left(2 \alpha-3 i_{2}=20 \alpha-3 \Rightarrow i_{2}=\frac{20 \alpha-3}{2 \alpha-3} \quad \mathrm{~A}\right.
\end{aligned}
$$

(Prob.b)

$$
\begin{aligned}
2 i_{1}+i_{2}=5 \quad i_{1} & =\frac{5-i_{2}}{2} \\
i_{1} & =\frac{1}{2}\left(5-\frac{20 \alpha-3}{2 \alpha-3}\right)=\frac{1}{2}\left(\frac{10 \alpha-15-20 \alpha+3}{2 \alpha-3}\right) \\
i_{1} & =\frac{-10 \alpha-12}{2(2 \alpha-3)}=\frac{-(5 \alpha+b)}{(2 \alpha-3)}
\end{aligned}
$$

- Find the total power absorbed in $R_{1}, R_{2} \& R_{3}$:

$$
\begin{aligned}
& P_{R+}+P_{R 2}+P_{R_{2}}=P_{R e q} \\
& \left.P_{=}+I=I=I R\right) \cdot I=I^{2} R \\
& P_{R e q}=i_{2}^{2} \cdot R_{e q}=\left(\frac{-(5 \alpha+b)}{2 \alpha-3}\right)^{2} \cdot 10 u=\left(\frac{5 \alpha+6}{2 \alpha-3}\right)^{2} \quad W
\end{aligned}
$$

Problem 7: Solve for mesh currents.

Problem7)
(a) mesh4: $i_{4}=-6 A \quad$ (eq. 1)

KVL@

$$
\begin{gathered}
\text { mesh 3: } \left.-V_{x}+100\left(i_{3}-i_{2}\right)-i_{2}+5 \cos ^{(} i_{3}-i_{2}\right)+100\left(i_{3}-i_{4}\right)=0 \\
v_{x}=100 \times i_{2}=i_{2} \\
-i_{2}+i_{3}-i_{1}-i_{2}+5 i_{3}-5 i_{2}+i_{3}-i_{4}=0 \\
-i_{1}-i_{2}(1+1+5)+i_{3}(1+5+1)-i_{4}=0 \\
-i_{1}-7 i_{2}+7 i_{3}-i_{4}=0 \quad\left(2 i_{2}\right)
\end{gathered}
$$

kll a supermesh:

$$
\begin{aligned}
& -10+3 i_{1}+8 i_{2}+1 i_{2}+5\left(i_{2}-i_{1}\right)+i_{2}+1\left(i_{1}-i_{2}\right)+v_{x}=0 \\
& v_{x}=10 i_{x} i_{2}=i_{2} \\
& i_{1}(1+1)+i_{2}(8+1+5+1+1)+i_{3}(-5-1)=10 \\
& 4 i_{1}+16 i_{2}-6 i_{3}=10 \stackrel{2}{2} i_{1}+8 i_{2}-3 i_{3}=5 \quad \text { (eq. 3) }
\end{aligned}
$$

Kcl@ Supermesh (node1): $\quad i_{1}-i_{2}=2 i_{1} \Rightarrow i_{1}+i_{2}=0 \quad($ eq. 4)
Replace equation 1 in equation 2:

$$
-i_{1}-7 i_{2}+7 i_{3}-(-6)=0 \quad \rightarrow-i_{1}-7 i_{2}+7 i_{3}=-6 \quad(e q \quad 2)
$$

Solving with Cramer's rule:

$$
\operatorname{eq} 3\left[\begin{array}{ccc}
1 & 1 & 0 \\
2 & 8 & -3 \\
-1 & -7 & 7
\end{array}\right]\left[\begin{array}{c}
i_{1} \\
i_{2} \\
i_{2} \\
i_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
5 \\
-6
\end{array}\right]
$$

$$
\begin{aligned}
& \Delta_{1}=24 \\
& \Delta_{1}=-17 \\
& \Delta_{2}=17 \\
& \Delta_{2}=-6 \\
& i_{1}=\frac{\Delta_{1}}{\Delta}=\frac{-17}{24}=-0.7 \mathrm{~A} \\
& i_{2}=\frac{\Delta_{2}}{\Delta}=\frac{17}{24}=07 \mathrm{~A} \\
& i_{3}=\frac{\Delta_{3}}{\Delta}=\frac{-6}{24}=-0.25 \mathrm{~A}
\end{aligned}
$$

Problem 8: Solve for mesh currents.

(0) mesh 2: $i_{2}=10 \mathrm{~A} \quad(\mathrm{eq.1)}$

KVL (9) mesh:

$$
\begin{aligned}
& 2\left(i_{4}-i_{3}\right)+i_{4}+2=0 \\
& 3 i_{4}-2 i_{3}=-2 \quad \text { (eq.2) }
\end{aligned}
$$

There are 4 unknowns; $i_{1, i}, i_{3}$ and i_{4} so we need 4 eq.s, We have got two equations so far. and must write two more. We can not write any kv equations. For mesh 1. mesh. mesh 3 on any of the supermeshes, So we have to write two kl equations.
$\mathrm{kCl}(\mathrm{O}$ node $1: i 3-i=5 \mathrm{~A}(\mathrm{q} \cdot 3)$
KCl@ node 2: $i_{1}+6 A+5 A=10 A \Rightarrow i_{1}=-1 A \quad$ (eq. 4)

Replace i_{1} bela in eq. $3 \Rightarrow 23-(-1 A)=5 A \rightarrow i_{3}=4 A$

Replace igbo $4 A$ in eq.2 $\Rightarrow 3 i 4-2(4 A)=-2$

$$
\begin{gathered}
i_{4}=\frac{8-2}{3}=\frac{b}{3} \\
i_{4}=2 \mathrm{~A}
\end{gathered}
$$

Problem 9: Use your circuit analysis skills to find the ratio of the power absorbed by R_{L} to the power supplied by V .

Problems)
To find the power ratio, we must first find I_{s} and $I_{\text {L. You can }}$ use nodal or mesh analysis. Here mesh analysis has been used:
kv@ mesh: $-V_{s}+90 i+10\left(i-i_{2}\right)=0$

$$
100 i_{1}-10 i_{2}=v_{s} \quad(e q .1)
$$

Kun@ supermesh: $10\left(i_{2}-i_{1}\right)+100 i_{3}+5 i_{2}=0$

$$
\begin{aligned}
& -10 i_{1}+15 i_{2}+100 i_{3}=0 \\
\square 5 & -2 i_{1}+3 i_{2}+20 i_{3}=0 \quad(e q .2)
\end{aligned}
$$

KCL@supermesh.node 1:

$$
\left.\begin{array}{l}
i_{3}-i_{2}=10 V_{x} \\
V_{x}=90 i_{1}
\end{array}\right\} \Rightarrow i_{3}-i_{2}=10\left(90 i_{1}\right)
$$

$$
\Rightarrow \quad 900 i_{1}+i_{2}-i_{3}=0 \quad(e q \cdot 3)
$$

Solving the equations:

$$
\left[\begin{array}{ccc}
100 & -10 & 0 \\
-2 & 3 & 20 \\
900 & 1 & -1
\end{array}\right]\left[\begin{array}{c}
i_{1} \\
i_{2} \\
i_{3}
\end{array}\right]=\left[\begin{array}{c}
V_{s} \\
0 \\
0
\end{array}\right]
$$

(Prob. 9)

$$
\begin{aligned}
& \Delta=-182280 \\
& \Delta_{1}=\left|\begin{array}{rrr}
v_{s} & -10 & 0 \\
0 & 3 & 20
\end{array}\right|=v s\left|\begin{array}{cc}
3 & 20 \\
1 & -1
\end{array}\right|+10\left|\begin{array}{ll}
0 & 20 \\
0 & -1
\end{array}\right|+0\left|\begin{array}{ll}
0 & 3 \\
0 & 1
\end{array}\right| \\
& =V_{s}(-3-20)=-23 V_{s} \\
& \left.\Delta_{2}=\left|\begin{array}{ccc}
100 & V s & 0 \\
-2 & 0 & 20 \\
900 & 0 & -1
\end{array}\right|=100\left|\begin{array}{cc}
0 & 20 \\
0 & -1
\end{array}\right|-V_{s} \right\rvert\, \begin{array}{cc}
-2 & 20 \\
900 & -1
\end{array}+0 \\
& =-V_{s}(2-20 \times 900)=17998 \mathrm{Vs} \\
& L_{1}=\frac{\Delta_{1}}{\Delta}=\frac{-23 V_{s}}{-182080}=1.26 \times 10^{-4} V_{s} \Rightarrow P_{\text {sorce }}=V_{s} \cdot V_{s}=V_{s} \cdot\left(i_{1}\right)=V_{s} \cdot\left(-1.26 \cdot 10 V_{s}\right) \\
& \Rightarrow P_{\text {scune }}=-1.26 \times 1_{0}^{-4} V_{s}^{2}[W] \\
& =-0.126 \mathrm{~V}^{2}[\mathrm{~mW}] \\
& i_{2}=\frac{\Delta_{2}}{\Delta}=\frac{17998 V_{S}}{-182280}=-0 \cdot V_{S}: P_{R_{L}}=\left(I_{L}\right)^{2} \cdot R_{L}=\left(i_{1}-i_{2}\right)^{2} \cdot R_{L} \\
& P_{R_{1}}=(\underbrace{\left.(2 b \pi)_{0}^{-4}+0.1\right)^{2} V_{s}^{2} \cdot 10 . \Omega=0.1 \mathrm{~V}_{3}^{2}[W]}_{\approx 0.1} \\
& P_{R_{L}}=100 \sqrt{s}^{2}[\mathrm{md}] \\
& \Rightarrow \frac{P_{s}}{P_{\text {sorce }}}=\frac{100 \mathrm{~V}_{5}^{2}}{-0.126 \mathrm{~V}_{5}^{2}}=-793.6
\end{aligned}
$$

Problem 10: Find i_{0}.

Problem (0)
Because of the way this crocket looks, it is easier to do nodal anysys To find i_{0}, first we have to stain v_{3} and v_{4}
$\mathrm{kcl}+$ Ohm@ node 3:

$$
\begin{align*}
& \frac{v_{3}-v_{2}}{20}+\frac{v_{3}}{v_{0}}+\frac{v_{3}-v_{2}}{v_{2}}+\frac{v_{3}}{200}+\frac{v_{3}-v_{4}}{0.50}=0 \\
& -v_{2}\left(\frac{1}{2}+1\right)+v_{3}\left(\frac{1}{2}+1+1+\frac{1}{2}+2\right)-2 v_{4}=0 \\
& -\frac{3}{2} v_{2}+5 v_{3}-2 v_{4}=0 \quad x_{2} \quad-3 v_{2}+10 v_{3}-4 v_{4}=0 \tag{eq.1}
\end{align*}
$$

$\mathrm{KCl}+$ Ohm@ the supernode:

$$
\begin{align*}
& \frac{v_{1}}{0.2 \pi}+\frac{v_{2}-v_{3}}{20}+\frac{v_{2}-v_{3}}{v_{0}}=0 \\
& 5 v_{1}+\frac{3}{2} v_{2}-\frac{3}{2} v_{3}=0 \quad 22=10 v_{1}+3 v_{2}-3 v_{3}=0 \tag{eq.2}
\end{align*}
$$

(a) node 4: $V_{4}=60 \quad$ (eq. 3)

KNee supernode: $v_{2}-v_{1}=5 v \rightarrow-v_{1}+v_{2}=5 v($ eq. 4 $)$

Replace V_{4} from eq. 2 in eq. $1:$

$$
\begin{aligned}
& -3 v_{2}+10 v_{3}=24 \text { (en } 1 k \text {) } \\
& {\left[\begin{array}{ccc}
0 & -3 & 10 \\
10 & 3 & -3 \\
1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{c}
24 \\
0 \\
5
\end{array}\right] \rightarrow v_{3}=\frac{\Delta_{3}}{\Delta}=\frac{\left|\begin{array}{ccc}
0 & -3 & 24 \\
10 & 3 & 0 \\
-1 & 1 & 5
\end{array}\right|}{\left|\begin{array}{ccc}
0 & -3 & 1 \\
10 & 3 & -3 \\
10 & 1
\end{array}\right|}=\frac{462}{121}=382} \\
& i_{0}=\frac{v_{3}-v_{4}}{0.5 \Omega}=\frac{3.8 v-6 v}{0.5 s}=-4.36 \mathrm{~A}
\end{aligned}
$$

Problem 11: Find node voltages and currents.

Problem 11)

KCL+Ohm'slaw@

$$
\begin{aligned}
& \text { Mode 1: } \frac{V_{1}-V_{3}}{b}+\frac{V_{1}-V_{a}}{3}=3 A \Rightarrow V_{1}\left(\frac{1}{b}+\frac{1}{3}\right)-\frac{V_{3}}{b}-\frac{V_{2}}{3}=3 \\
& \text { xt, } 3 V_{1}-V_{3}-2 V_{2}=18 \quad(e q .1) \\
& \text { node } 2: \frac{v_{2}-v_{1}}{3 n}+\frac{v_{2}-v_{4}}{5 n}+\frac{v_{2}-v_{5}}{8,4 x}=0 \Rightarrow \frac{-v_{1}}{3}+v_{2}\left(\frac{1}{2}+\frac{1}{5}+\frac{1}{12}\right)-\frac{v_{4}}{5}-\frac{v_{5}}{12}=0 \\
& \stackrel{x b 0}{ }-20 v+37 v_{2}-12 v_{4}-5 y 5=0(e q \cdot 2) \\
& \text { node } 3=\frac{13-7}{6 \pi}+\frac{13-v_{4}}{5 n}+\frac{v_{3}}{3 a}=0 \Rightarrow \frac{-v_{1}}{6}+v_{3}\left(\frac{1}{6}+\frac{1}{5}+\frac{1}{3}\right)-\frac{v_{4}}{5}=0 \\
& \xrightarrow{\times 30} \quad-5 v_{1}+21 v_{3}-6 v_{4}=0(e q .3)
\end{aligned}
$$

$$
\begin{aligned}
& n o d e 4: \frac{V_{4}-v_{3}}{5}+\frac{v_{4}-v_{2}}{50}+\frac{v_{4}-v_{5}+\frac{v_{4}-v_{b}}{30}=0}{20}=0 \\
& -\frac{1}{2}-\frac{V_{5}}{5}+V_{4}\left(\frac{1}{5}+\frac{1}{5}+\frac{1}{3}+\frac{1}{2}\right)-\frac{V_{5}}{3}-\frac{V_{6}}{2}=0 \\
& \xrightarrow{\times 30}>-6 \sqrt{2}-6 \sqrt{3}+\sqrt{4}(6+6+10+15)-10 \sqrt{5}-15 \sqrt{6}=0 \\
& -6 v_{2}-b v_{2}+37 v_{4}-10 v_{5}-15 v_{b}=0(e 9.4)
\end{aligned}
$$

$$
\begin{aligned}
& n o d e b: \frac{V^{b}-v_{5}}{b a+3 a}+\frac{V_{6}-v_{4}}{2 a}+\frac{V_{b}}{2 n}=0 \Rightarrow \frac{-V_{4}}{2}-\frac{V_{5}}{9}+\sqrt{a}\left(\frac{1}{9}+\frac{1}{2}+\frac{1}{2}\right)=0 \\
& \times 18 \\
& -9 V_{4}-2 V_{5}+20 V_{b}=0 \quad(e q . b)
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5} \\
v_{6}
\end{array}\right]=\left[\begin{array}{l}
14.33 v \\
10.08 v \\
4.83 v \\
4.98 v \\
5.32 v \\
2.77 v
\end{array}\right]} \\
& \begin{array}{l}
i_{1}=\frac{v_{1}-v_{2}}{3 x}=\frac{14.33-10.08}{3 x}=1.416 \mathrm{~A} \\
i_{2}=\frac{v_{2}-v_{5}}{g_{4}+4 x}=\frac{40.08-5.32)}{12 a}=0.37 \mathrm{~A} \\
i_{3}=\frac{v_{1}-v_{3}}{6 x}=\frac{(4.33-4.83 v}{4 x}=1.58 \mathrm{~A}
\end{array} \\
& i_{4}=\frac{v_{2}-v_{4}}{5 s}=\frac{(10.08-498)}{5 x}=1.02 \mathrm{~A} \\
& \text { To solve the } 6 \text { simultaneous equations, you can } \\
& \text { use the elimination method or Crater's rule to } \\
& \text { solve it by hand, or use a calculator or a software } \\
& \text { Here the equations have been solved by } \\
& \text { MATLAB. To do so, first enter the } 6 \times 6 \text { matrix for } \\
& \text { voltage coefficients- Let's call it matrix G- using } \\
& \text { the following command: } \\
& G=[3-2-1000 \text {; -20 } 370-12-50 ;-5021 \text {-6 } 0 \\
& 0 ; 0-6 \text {-6 } 37-10-15 ; 0-30-1219-4 ; 000-9-2 \\
& \text { Also enter the } 6 \times 1 \text { matrix on the right (I), If we call } \\
& \text { the } 6 \times 1 \text { matrix for voltages } V \text {, Then the } \\
& \text { simultaneous equations in matrix form is: } \mathrm{GxV}=1 \\
& \text { If both sides of the above equation are multiplied } \\
& \text { by the inverse of matrix G, ide. G-1 we get } \\
& G^{-1} \times G x V=G \cdot x l \text {, or } V=G-x \mid \\
& \text { after you have defined } G \text { and } I \text {, use the } \\
& \text { following command to find } \mathrm{V} \text { : } \\
& 5=i_{2}=0.34 a \\
& b=\frac{13-4}{5 x}=\frac{(4.82-4.98) v}{5 x}=-0.03 \mathrm{~A} \\
& i_{7}=\frac{v_{4}-v_{5}}{3 x}=\frac{(4.98-532)}{3 x}=-0.113 \mathrm{a} \\
& 18=\frac{43}{3 x}-\frac{4.83 x}{3 x}=1.61 \mathrm{~A} \\
& i_{9}=\frac{V_{4}-V_{6}}{2 A}=\frac{(4-98-2.77)}{2 n}=1.105 \mathrm{~A} \\
& L_{10}=\frac{v_{5}-v_{b}}{3 x+b}=\frac{(5.32-2.77 v}{9 x}=0.28 \mathrm{~A} \\
& i_{11}=\frac{-v_{6}}{2 \Omega}=\frac{-2.77 v}{2 n}=-1.385 \mathrm{~A} \\
& i_{2}=-i_{10}=-0.28 a
\end{aligned}
$$

