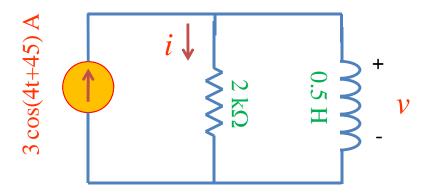
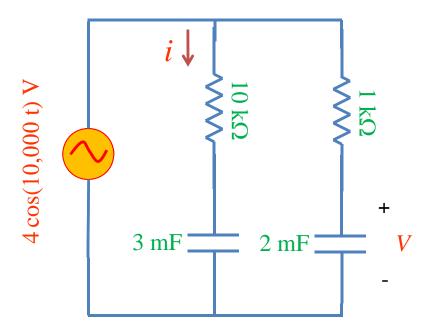
EECS 70A: Network Analysis

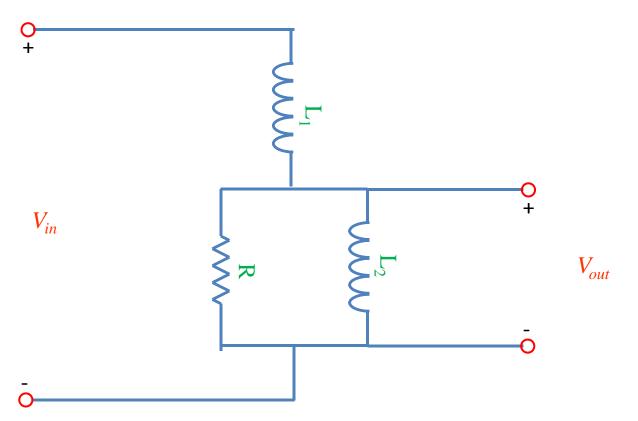

Homework #6

Due Friday, June 4, 2010.

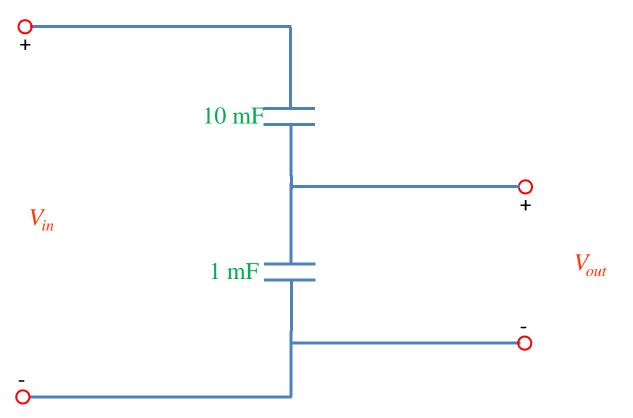
Problem 1: Time to frequency and back


- A) Given $v(t) = 4 \cos(\omega t + \pi/4)$ find the phasor **V** that represents v(t). Express **V** as x+jy and as $re^{i\phi}$.
- B) Given $i(t) = 4 \sin(\omega t + \pi/2)$ find the phasor **I** that represents i(t). Express **I** as x+jy and as $re^{i\phi}$.
- C) Given V = 3 + j4 find v(t).
- D) Given $I = 1.5 e^{i\pi/3}$ find i(t).

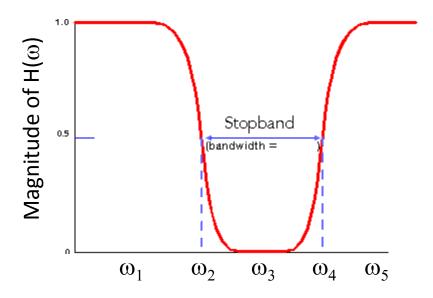
Problem 2


Find i(t) and v(t). Hint: convert the current source into a phasor, then find the current and voltage phasors for the whole circuit, then convert back to the time dependent i(t), v(t).

Problem 3


Find i(t) and v(t). Hint: convert the voltage source into a phasor, then find the current and voltage phasors for the whole circuit, then convert back to the time dependent i(t), v(t).

Problem 4: Transfer function


Calculate $H(\omega)$ for this circuit. Sketch the magnitude of $H(\omega)$ vs. ω .

Problem 5: Transfer function

Calculate $H(\omega)$ for this circuit. Sketch the magnitude of $H(\omega)$ vs. ω .

Problem 6: Band stop filter

- A) Given $v(t) = 4 \cos(\omega_1 t + \pi/4)$ find $v_{out}(t)$.
- B) Given $v(t) = 3 \cos(\omega_2 t + \pi/2)$ find $v_{out}(t)$.
- C) Given $v(t) = 2 \cos(\omega_3 t + \pi/3)$ find $v_{out}(t)$.
- D) Given $v(t) = 2 \cos(\omega_4 t + \pi/2)$ find $v_{out}(t)$.
- E) Given $v(t) = 2 \cos(\omega_5 t + \pi/4)$ find $v_{out}(t)$.

Note: You cannot determine the phase of $v_{out}(t)$ so leave that as unknown in your answer.