Announcements:

- 1. Final HW due Friday of 10th week
- 2. Professor Burke's office hours this week:

Tu 9:30-11:30 (EH 2230) Th 9:30-11 (EG 2232)

Th 2-3:30 (EH 2230)

- 3. Exam:
 - Will cover all of Chs. 1,2,3,4,6, 7.1-7.3,
 9 (not delta-Y), 14.1 14.2 14.3 14.5 14.6 14.7
 - Not covered: 3.6, 3.8, 4.9, 6.6.
 - No calculators. We will give sin, cos, tan tables as shown on last slide of today's notes..

EECS 70A: Network Analysis

Lecture 16

Comprehensive review

Topics covered

- KCL, KVL
- Nodal analysis
- Mesh analysis
- Thevenin/Norton theorem
- RL, RC circuits (time dependence)
- R,L,C circuits
 - Phasors
 - Impedances
 - Transfer function

Thevenin, Norton Theorems:

Equivalent to:

Equivalent to:

6/2/2010

Thevenin:

1. Calculating V_{th} :

Connect nothing to a-b. Calculate voltage. This is V_{th}.

2. Calculating R_{th}:

Method 1:

Connect terminal a to b (short).

Calculate the current from a to b. This is call $I_{\text{short circuit}}$.

R_{th}=V_{th}/I_{short circuit}.

Method 2:

Find the input resistance looking into terminals a-b after all the independent sources have been turned off.

(Voltage sources become shorts, current sources

become opens.)

Trick (if dependent sources present):

Apply a 1 A current source to terminals a-b, find V_{ab} $R_{th} = V_{ab}/1A$.

Norton:

1. Calculating R_N :

 $R_N = R_{th}$

2. Calculating I_N : $I_N = V_{th}/R_{th}$

RC circuit

LR circuit

Find V(t), i(t)

$$KVZ = V$$

$$KCL = V$$

$$L = V$$

$$L = V$$

$$R = V$$

$$R = V$$

Comprehensive Example

- A) This circuit is connected to a capacitor of value 1 μ F. The switch is in the closed position. After a long time, what are all the voltages and currents in this circuit?
- B) Next, the switch is opened.

 What are all the voltages and currents in this circuit as a function of time after the switch is opened?
- C) This circuit is now connected to a resistor R_0 . What is the power dissipated in R_0 ?
- D) If you were to pick a value of R₀ to absorb as much power as possible, what would it be?
- E) Exercise: Do the same as A,B with an inductor instead.

Comprehensive Example

Comprehensive Example

Conversion procedures

$$i(t) \rightarrow I$$

$$v(t) \rightarrow V$$

$$I \rightarrow i(t)$$

$$\mathbf{V} \rightarrow \mathbf{v}(\mathbf{t})$$

$$i(t) = I_m \cos(\omega t + \phi) \Rightarrow \mathbf{I} = I_m e^{j\phi}$$

$$v(t) = V_m \cos(\omega t + \phi) \Rightarrow \mathbf{V} = V_m e^{j\phi}$$

$$i(t) = \operatorname{Re}\left(\mathbf{I} \ e^{j\omega t}\right)$$

$$v(t) = \operatorname{Re}\left(\mathbf{V}e^{j\omega t}\right)$$

For the exam, you should know how to carry out these procedures.

Circuits

$$\mathbf{z} = \mathbf{I} \mathbf{R} \quad \mathbf{v} = \mathbf{I} \mathbf{R} \quad \mathbf{v} = \mathbf{I} \mathbf{v} \mathbf{v} = \mathbf{I} \mathbf{v}$$

"Impedance"

$$Z = R$$

$$Z=1/j\omega C$$

$$Z = j\omega L$$

KCL, KVL hold for relationship between **V**, **I**.

Series/Parallel Impedances

$$Z_{1} \quad Z_{2} \quad Z_{3} \quad = \quad Z_{eq}$$

$$Z_{eq} = Z_{1} + Z_{2} + Z_{3}$$

$$Z_{eq}^{-1} = Z_{1}^{-1} + Z_{2}^{-1} + Z_{3}^{-1}$$

Conversion procedures

Given i(t) find v(t):

$$i(t) \rightarrow I \rightarrow V = I Z_{eq} \rightarrow v(t)$$

Given v(t) find i(t):

$$v(t) \rightarrow \mathbf{V} \rightarrow \mathbf{I} = \mathbf{V}/Z_{eq} \rightarrow i(t)$$

For the exam, you should know how to carry out these procedures.

"Transfer Function"

$$H(\omega) = V_{out}/V_{in}$$

Phasor Example 1

Find v(t).

1 kΩ

10 kΩ

25 μH

2 mF

-

Phasor Example 2

Example Transfer function

Calculate $H(\omega)$ for this circuit. Sketch the magnitude of $H(\omega)$ vs. ω .

Exam cheat sheet

This will be provided with the exam.

 \sin

radians:
$$0 \frac{\pi}{6} \frac{\pi}{4} \frac{\pi}{3} \frac{\pi}{2} \pi$$

$$\sin \frac{\sqrt{0}}{2} \frac{\sqrt{1}}{2} \frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2} \frac{\sqrt{4}}{2} 0$$

$$\cos \quad \frac{\sqrt{4}}{2} \quad \frac{\sqrt{3}}{2} \quad \frac{\sqrt{2}}{2} \quad \frac{\sqrt{1}}{2} \quad \frac{\sqrt{0}}{2} \quad -1$$

tan
$$\frac{\sqrt{0}}{\sqrt{4}}$$
 $\frac{\sqrt{1}}{\sqrt{3}}$ $\frac{\sqrt{2}}{\sqrt{2}}$ $\frac{\sqrt{3}}{\sqrt{1}}$ DNE 0

where $\sqrt{\cdot}$ always denotes the positive square root, and DNE means does not exist.

0