EECS 70A: Network Analysis

Lecture 1

Power Networks

Digital circuits

- •How do we understand what every transistor is doing?
- •There are *hundreds of millions...*

Simplifications

Leon Charles Thevenin 1857–1926

Ultimate problem solvers: Take a complex system, break it into its component parts:

Current

Charge of an electron:

$$e = -1.6 \times 10^{-19} \text{ Coulomb } [C]$$

Current is flow of charge. In a wire, charges are free electrons.

$$i = dq/dt$$

Examples

1 electron per second flows past a plane.

What is the current? (instructor)

$$C = \frac{dq}{dt} = \frac{1.6 \times 10^{-19} \text{ C}}{1 \text{ Sec}} = 1.6 \times 10^{-19} \text{ A}$$

10 A of current flows.

How many electrons per second flow past a plane? (students)

Demo circuit: Current source

Voltage

Physically, how do we get electrons to move? Apply a force.

$$F = eE$$

$$\int_{a}^{b} E dx = V_{ab} = V_{a} - V_{b} = \Delta V$$

 $V_{ab} \neq 0 \Rightarrow$ electrons pushed a to b, causing current to flow

E electric field: Volts/meter [V/m]

V voltage (aka potential difference): Volts [V]

Voltage source

Our next circuit element: *Voltage source*

Makes V_{ab} constant, regardless of how much current flows through it.

Dependent sources

Value of voltage is determined by something somewhere else in circuit.

Value of current is determined by something somewhere else in circuit.

sources

sources

- A dependent source is an active element in which the source quantity is controlled by another voltage or current.
- They have four different types: VCVS, CCVS, VCCS, CCCS. Keep in minds the signs of dependent sources.

Power

$$Ix V_{ab} = power$$

Watts [W] = Volt Amp [V-A]

Note: MKSA unit system: Meters Kilogram Second Amp

Examples

$$V_{ab} = 100 \text{ Volts}$$

$$P = ?$$
 (instructor)

Examples
$$V_{ab} = 100 \text{ Volts}$$

$$P = ? \text{ (instructor)}$$

$$P = A = 100 \text{ V} = 100 \text{ A} - \text{V}$$

$$I=5A$$

$$P = 10 W$$

$$V_{ab} = ?$$

(students)

Sign convention

 V_{ab} positive => V_a > V_b I_{ab} positive => current flows from a to b

 V_{ab} negative => V_a < V_b I_{ab} negative => current flows from <u>b</u> to a

Define convention first, then solve problem.

P > 0 means power flowing into element (e.g. resistor)

P < 0 means power flowing out of element (e.g. battery)

CASE 1:

CASS I

Example

V = 120 V @ socket (assume DC).

Cost of electricity is 10 cents/kW-h

Day nothing, night 10 light bulbs on (100 W bulbs) for 1 hr.

What is monthly electric bill?

(instructor)

Topology

Like water in a river...

Voltage same everywhere....
Concept of a node

Example

$$I_3 = ?$$

$$V_{\text{element 1}} = ?$$

$$V_{\text{element 2}} = ?$$

Power supplied by source =?

(instructor)

Example

Three light bulbs (100 W each) on 1 hour/night. 120 V @ socket.

Mhat is I per bulb? Hint That = 100W = Vous I bulb

What is I_{total} from supply?

What is bill?

What is power sourced?

$$I_{TOT} = \sum_{i=0}^{\infty} A_i$$

$$= \sum_{i=0}^{\infty} A_i$$

$$= \sum_{i=0}^{\infty} A_i$$

(student)

Generator will fail of power required > 1 MW How many light bulbs need to be turned on to damage the generator?