EECS 70A: Network Analysis

Lecture 3

Announcements

- Quiz #1 results excellent
 - A few percent of students confused about sign
- HW 1 due tomorrow in discussion
- Midterm next Thursday (ch 1-2)
 - One more HW and quiz before then
- Recorded lectures to be posted online starting today

Review & agenda

Last lecture:

- Examples
 - Power (sink/source)
 - Current (postive/negative)
 - Dependent sources
- Resistors
 - Series
 - Parallel

Today

- Examples (resistor circuits)
- Kirchoff's laws
- Example applications of Kirchoff laws

Resistors

$$V_{ab} = I_{ab} \times R$$

Resistance units: Ohms $[\Omega]$

Generalize: N resistors in parallel

 $R_1 \parallel R_2$ is notation for "R₁ in parallel with R_2 "

Generalize: N resistors in series

Node

Vab = SEdx

 $V_{xy} = \int_{x}^{y} E dx$

In ideal metal E = 0 => Vxy = 0

3/31/2010 EECS 70A © 2010 P. J. Burke 8

Solve for R_{ea} . (students).

Pen

Careful
$$(R, 11R_2)+R_3+R_11(R_2+R_3)$$

$$R_1$$

$$R_2$$

$$R_3$$

$$R_4$$

$$R_4$$

$$R_4$$

$$= R_1 + R_2 + \frac{1}{R_1} + \frac{1}{R_4} + \frac{1}{R_5} + \frac{1}{R_6}$$

$$\frac{1}{Req} = \frac{1}{R_3} + \frac{1}{R_4} + \frac{1}{R_5} + \frac{1}{R_6}$$

$$Req = \frac{1}{R_3} + \frac{1}{R_4} + \frac{1}{R_5} + \frac{1}{R_6}$$

Solve for R_{eq} . (instructor).

=
$$\begin{cases} Req = R, + R_6 + R_7 \\ + \left[Rs | |(R_2 + R_7 + R_4) \right] \end{cases}$$

Emphasis: Nodes

Solve for R_{eq} . (instructor).

Voltage divider

Derivation:

$$iR_{z} + iR_{1} = V_{iN}$$

$$i = \frac{V_{iN}}{R_{i} + R_{z}}$$

$$V_{out} = iR_{z}$$

$$= \frac{R_{z}}{R + R_{z}} V_{iN}$$

Why important? Concept of source/load. (Thevenin...)

$$V_{out} = rac{R_2}{R_1 + R_2} V_{in}$$

Source/load

We say R_{load} "loads down" the source.

Battery/light bulbs

"Fanout"

Questions?

Notation: one element

$$V_{ab} = I_{ab} R_1$$

V_{ab} is the voltage *drop* from a to b.

Textbook chapter 2 notation:

$$V_1 = I R_1$$

In chapter 2, text does not label each node. V_1 is voltage drop across resistor 1.

Notation: two elements in series

Textbook chapter 2 notation:

V_{ab} is the voltage drop across resistor 1

V₁ is the voltage drop across resistor 1

Letters and numbers

Both can be used to label nodes, resistors, voltages, currents, etc.

V₁₂ is the voltage drop across resistor 1

Chapter 2 notation

V₁₂ is the voltage drop across resistor 1

Textbook chapter 2 notation:

V₁ is the voltage drop across resistor 1

Questions?

Kirchoff's current law

You have already seen:

$$i_1 = i_2 + i_3$$

Like water in a river...

More generally:

Sum of currents *entering* node = sum of currents *leaving* node.

Stated as Kirchoff's current law (KCL):

$$\sum_{n=1}^{N} i_n = 0$$
Current *entering* a node: i_n positive
Current *leaving* a node: i_n negative

Find a relationship among i_1, i_2, i_3, i_4 (instructor)

Find a relationship among i_1 , i_2 , i_3 , i_4 (students)

Find a relationship among i_1, i_2, i_3, i_4 ... (instructor)

Find a relationship among i_1, i_2, i_3, i_4 ... (instructor)

Find a relationship among i_1, i_2, i_3, i_4 ... (students)

- a) Find the # of nodes in this circuit. (Instructor)
- b) Find is i_1 thru i_9 in this circuit. (Instructor) Hint: Apply KCL at each node.

- a) Find the # of nodes in this circuit. (Instructor)
- b) Find is $i_1 i_2 \& i_3$ in this circuit. (Instructor) Hint: Apply KCL at each node.

- a) Find the # of nodes in this circuit. (students)
- b) Find is $i_1 \& i_2$ in this circuit. (students) Hint: Apply KCL at each node.

3/31/2010 EECS 70A © 2010 P. J. Burke 34

Questions?

Voltage addition in circuits

From lecture #2:

$$V_{ac} = V_{ab} + V_{bc}$$

V_{ab} = "voltage drop" across element # 1

V_{bc} = "voltage drop" across element # 2

Closing the loop:

$$V_{ac} = V_{ab} + V_{bc}$$

V_{ab} = "voltage drop" across element # 1

V_{bc} = "voltage drop" across element # 2

Generalize loop to N-elements:

$$\begin{array}{c} V_{ay} = V_{ab} + V_{bc} + \\ V_{cd} + \ldots + V_{xy} \end{array}$$

V_{ab} = "voltage drop" across element # 1

V_{bc} = "voltage drop" across element # 2

V_{cd} = "voltage drop" across element # 3

V_{xv} = "voltage drop" across element # N

Kirchoff's voltage law

$$\sum_{n=1}^{N} v_n = 0 \qquad \text{around any closed loop.}$$

$$\text{voltage drops}$$

Questions?

Symbol library

Symbol library

Symbol & circuit library

