Announcements:

1. Announcements

EECS 70A: Network Analysis

Lecture 6

Today's Agenda

- Review of Nodal Analysis
- Mesh Analysis
 - Introduction
 - What is a Mesh?
 - Mesh Current
 - Method
- Mesh Analysis with Current Source

Node Voltage(review)

V_{ab} is the voltage drop across resistor 1

Nodal Analysis (Review)

Based on KCL, Use node voltages as circuits variables.

- 1. Define a reference node.
- 2. Label remaining nodes. (n-1 nodes)
- 3. Apply KCL + ohm to all nodes and supernodes
 - 1. Express all I's in terms of v's
- 4. Apply KVL to loops with voltage source
- 5. Solve the n-1 simultaneous equations, to find V's
- 6. Use Ohm's law to find the currents.

Apply KCL + Ohm to All Nodes and Supernodes

Nodal Analysis-Example

Mesh Analysis-Introduction What is a Mesh?

 A loop is a closed path with no node passed more than once.

 A mesh is a loop that does not contain any other loops within it.

Mesh Analysis-Introduction Mesh Current vs. Element Current

- The current through a mesh is known as mesh current.
- Direction of the mesh current is arbitrary-conventionally assumed to be clockwise.
- The current through an element can be the same as mesh current or the subtraction of two mesh currents.

Mesh Analysis-Method

- Assign mesh currents $i_1, i_2, ... i_n$
- Apply KVL+ Ohm's law to each mesh
- Solve the equations for $i_1, i_2, ... i_n$

Apply KVL+ Ohm's Law to Each Mesh

$_{7\Omega}$ Mesh Analysis - Example

Mesh Analysis with Current Sources

• CASE 1: current source only in one mesh.

already have the current for that mesh => no need to write

Mesh Analysis with Current Sources

- CASE 2: current source exits between two meshes. => create a supermesh
 - Apply KVL to the supermesh
 - Apply KCL to the supermesh

Mesh Analysis- Example

Mesh Analysis- Example

Nodal Versus Mesh Analysis

- The method that results in fewer number of equations is more suitable.
 - Mesh analysis for networks with many series connected elements
 - Nodal Analysis for networks with many parallel connected elements

But also depends on the type of the sources.

Symbol library

а

b

17

Symbol & circuit library

