Announcements:

1. Announcements

EECS 70A: Network Analysis

Lecture 6

Today's Agenda

- Review of Nodal Analysis
- Mesh Analysis
 - Introduction
 - What is a Mesh?
 - Mesh Current
 - Method
- Mesh Analysis with Current Source

Node Voltage(review)

 V_{ab} is the voltage drop across resistor 1

Nodal Analysis (Review)

Based on KCL, Use node voltages as circuits variables.

- 1. Define a reference node.
- 2. Label remaining nodes. (n-1 nodes)
- 3. Apply KCL + ohm to all nodes and supernodes
 - 1. Express all I's in terms of v's
- 4. Apply KVL to loops with voltage source
- 5. Solve the n-1 simultaneous equations, to find V's
- 6. Use Ohm's law to find the currents.

Apply KCL + Ohm to All Nodes and Supernodes

Nodal Analysis-Example

$$v_i = 5_v$$

$$\frac{\sqrt[3]{3-\sqrt{1}}}{2(\sqrt{3}-\sqrt{4})} + 2\sqrt{3} + 5(\sqrt{3}-\sqrt{5}) + 2(\sqrt{3}-\sqrt{4}) - 1 = 0$$

$$-\sqrt[4]{10\sqrt{3}-5\sqrt{5}-2\sqrt{4}} = 1$$

$$\sqrt[4]{5}$$

$$10\sqrt{3}-2\sqrt{4}-5\sqrt{5}=6$$

$$\frac{1}{5} V_{5+1} + 5(V_{5-1}V_{3}) - 2(V_{3-1}V_{4}) = 0$$
(2)

$$O(4) 5(\sqrt{2}-\sqrt{1}) + 2(\sqrt{3}-\sqrt{4}) + 2(\sqrt{3}-\sqrt{4}) = 0$$
 (3)

Mesh Analysis-Introduction What is a Mesh?

A loop is a closed path with no node passed more than once.

A mesh is a loop that does not contain any other loops within it.

Mesh Analysis-Introduction Mesh Current vs. Element Current

- The current through a mesh is known as mesh current.
- Direction of the mesh current is arbitrary-conventionally assumed to be clockwise.
- The current through an element can be the same as mesh current or the subtraction of two mesh currents.

$$V_3 = \mathcal{R}_{\kappa} (l_1 - l_2)$$

$$V_1 = l_1 \times \mathcal{R}$$

Mesh Analysis-Method

- Assign mesh currents $i_1, i_2, ... i_n$
- Apply KVL+ Ohm's law to each mesh
- Solve the equations for $i_1, i_2, ... i_n$

14 VL

Mesh 1:

$$-10 + 3i_1 + 7(i_1 - i_2) + 10i_1 = 0$$

$$20i_1 - 7i_2 = 210$$

Mish2:

$$7(i_2-i_1) + 5i_2+5 + 2i_2 = 0$$

 $-7i_1 + 14i_2 = -5$ (2)

Apply KVL+ Ohm's Law to Each Mesh

Mesh Analysis - Example

$$M_2: 2 | i_2 - i_1 + 7 | i_2 + 4 | (i_2 - i_3) = 0$$

$$-2i_1 + 13i_2 - 4i_3 = 0$$
 (2)

M3:
$$-2(\frac{1}{2}-\frac{1}{3})+4(\frac{1}{3}-\frac{1}{2})-5+3i3=0$$

 $-6i_2+9i3=5$ (3)

Mesh Analysis with Current Sources

• CASE 1: current source only in one mesh.

already have the current for that mesh => no need to write

Mesh Analysis with Current Sources

- CASE 2: current source exits between two meshes. => create a supermesh
 - Apply KVL to the supermesh

KCL:
$$2i-5A=12$$

 $2i-i2=5$ (2)

$$\begin{cases} 13i_{11}14i_{2}=10 \\ i_{1}-i_{2}=5 \end{cases} \sim i_{1} & i_{2}$$

Mesh Analysis- Example

Mesh Analysis- Example

Nodal Versus Mesh Analysis

- The method that results in fewer number of equations is more suitable.
 - Mesh analysis for networks with many series connected elements
 - Nodal Analysis for networks with many parallel connected elements

But also depends on the type of the sources.

Symbol library

Symbol & circuit library

