Announcements:

- 1. HW will be due on Wednesday this week (check website for new version)
- 2. Graded midterms are for pickup from TAs

EECS 70A: Network Analysis

Lecture 9

Today's Agenda

- Thevinin/Norton theorem
- Power transfer
- Capacitors
- Inductors

Compartmentalization: Need for simplicity

Power brick image. And ask class to show their own... Demo: Computer?

Thevenin's Theorem

Equivalent to:

Finding V_{th}, R_{th}

Equivalent to:

Example

Find the Thevenin & Norton equivalent circuit of the circuit below with respect to terminals a and b:

Alternate method to find R_{th}:

Find R_{ab} when all independent sources turned off. (Voltage sources become shorts, current sources become opens).

b

Norton's Theorem

Equivalent to:

Finding V_{th}, R_{th}

Equivalent to:

Equivalent to:

Example

Find the Thevenin & Norton equivalent circuit of the circuit below with respect to terminals a and b:

Example

(Students): Find Thevenin & Norton equivalent circuit:

"Baby" monster problem

Find the Thevenin & Norton equivalent circuit of the circuit below with respect to terminals a and b:

Source/load

Thevenin Thm:

<u>Any</u> circuit can be represented by this equivalent circuit.

Case 1:

$$R_{load} >> R_{source}$$

Case 2:

$$R_{source} >> R_{load}$$

We say R_{load} "loads down" the source.

Source/load

We say R_{load} "loads down" the source.

Power

Arrow means R_L variable (e.g. by a knob)

Power delivered to load = ?

Questions?

Capacitors

$$q = CV$$

$$C = \frac{\mathcal{E}A}{d}$$

A=area d=plate separation

Farads[F] = Coulombs/Volt [C]/[V]

$$\varepsilon_0 = 8.85 \times 10^{-12} F/m$$

$$\mathcal{E} = \mathcal{K}\mathcal{E}_0$$

Dielectric constant:

$$\kappa = 3.9 \text{ SiO}_2$$

$$\kappa = 25 \text{ HfO}_2$$

"High-K Dielectric"

http://www.intel.com/technology/45nm/hafni um.htm?iid=tech 45nm+body animation haf nium

Time dependence

$$q = CV$$
 $i = \frac{dq}{dt} = C\frac{dV}{dt}$

q, V, i can depend on time!

Implicit:

$$q(t) = CV(t)$$
 $i(t) = \frac{dq(t)}{dt} = C\frac{dV(t)}{dt}$

Will not always write (t), but it is assumed from now on.

$$i(t) = C \frac{dV(t)}{dt} \Rightarrow V(t) = \frac{1}{C} \int i(t)dt$$
$$\Rightarrow q(t) = \int i(t)dt$$

Example Capacitor Problem

Find V(t), q(t)

One-bit memory

Typical dimensions: 0.1 micron x 0.1 micron area 10 nm thickness. What is C?

http://i.cmpnet.com/eet/news/07/11/DC1502_UTH_samsung.gif

1 Bit Read/Write

Example Problem #2

(Students): Find i(t), q(t)

RC circuit

Find V(t), q(t), i(t)

DRAM vs. SRAM

Example Capacitor Problem #2

Find V(t), q(t)

Parallel Capacitors

28

Example problem #4

(Students) Find V(t), given that V(t=0) = 5 Volts

Inductors

A=area

 μ = 4 π 10⁻⁶ H/m

$$V = L \frac{di}{dt}$$

$$L = \frac{N^2 \mu A}{l}$$
 A=area l=wire length N = # of turns $\mu = 4 \pi 10^{-6} \text{ H/}$

Henry[H]

$$V = L \frac{di}{dt} \Rightarrow i(t) = \frac{1}{L} \int V(t) dt$$

Series Inductors

Parallel Inductors

Example Inductor Problem

(Students): Find V(t).

Example Inductor Problem #2

(Students): Find i(t)

Example Inductor Problem #3

Find V(t)

LR circuit

Find V(t), i(t)

Example LR problem

(Students) Find V(t), given that V(t=0) = 5 Volts

Power

$$Ix V_{ab} = power$$

Watts [W] = Volt Amp [V-A]

Note: MKSA unit system:

Meters Kilogram Second Amp

Resistor: Energy lost to heat... Inductor or capacitor:

Energy STORED and can be recovered...

Energy stored

$$Ix V_{ab} = power$$

Energy:

$$W = \int Pdt = \int I \cdot Vdt$$

Capacitor stored energy:

$$\int I \cdot V dt = \int C \frac{dV}{dt} \cdot V dt = \frac{1}{2} CV^2 = \frac{Q^2}{2C}$$

Inductor stored energy:

$$\int I \cdot V dt = \int I \cdot L \frac{dI}{dt} dt = \frac{1}{2} L I^2$$

Symbol library

a

b

