EECS170A Spring 2007 **Final Exam** N

6/12/2007 10:30 to 12:30 pm Professor Peter Burke

Name:			
_			
D no.:			

1	2	3	4	5	6	Total
/10	/10	/10	/25	/20	/25	/100

DO NOT BEGIN THE EXAM UNTIL YOU ARE TOLD TO DO SO.

EECS170A Spring 2007 Final Exam	Name:
6/12/2007 10:30 to 12:30 pm	ID no.:
Professor Peter Burke	·

PROBLEM ONE: (20 points)

The differential equation that describes the voltage in an RLC network is

$$\frac{d^2v}{dt^2} + 5\frac{dv}{dt} + 4v = 0$$

Given that
$$v(0) = 0$$
, $dv(0)/dt = 10$ obtain $v(t)$.

Use the mathematical tools you learned for analyzing linear RLC circuits: First, find $s_{1,2}$ for the general solution, then decide whether it is under damped or overdamped, then find the constants and hence v(t) from the initial values.

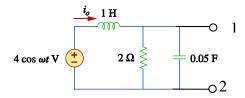
6/12/2007 10:30 to 12:30 pm Professor Peter Burke	ID no.:	
PROBLEM TWO: State and describe Thevenin's Theorem.		

Name:

EECS170A Spring 2007 Final Exam

State and describe Norton's Theorem.

EECS170A Spring 2007 Final Exam	Name:			
6/12/2007 10:30 to 12:30 pm Professor Peter Burke	ID no.:			
PROBLEM THREE:				
Describe the concept of transient response and of linear RLC circuits.				

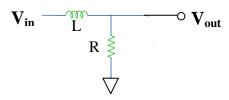

Describe the concept of steady state response and of linear RLC circuits.

EECS170A	A Spring 2007 Final Exam
6/12/2007	10:30 to 12:30 pm

Name:_			
D no.:_			

PROBLEM FOUR:

Using Phasors, find the Thevenin equivalent voltage V_{Th} and impedance Z_{Th} at terminals 1-2 of the circuits shown below. (You need not simplify your result.)

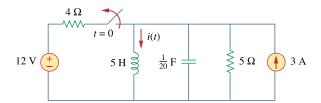

Professor Peter Burke

EECS170A Spring 2007 Final Exam	
6/12/2007 10:30 to 12:30 pm	

Name:	
ID no.:	

PROBLEM FIVE:

Using Phasors, find V_{out}/V_{in} for the circuit below. Sketch the magnitude of V_{out}/V_{in} vs. frequency.


Professor Peter Burke

EECS170A Spring 2007 **Final Exam** 6/12/2007 10:30 to 12:30 pm Professor Peter Burke

Name:		
ID no.:		

PROBLEM SIX:

Determine i(t) for t > 0 in the circuit below.

