Name:_____ ID no.:_____

5/28/2007 11:00 to 12:20 pm Professor Peter Burke

1	2	3	4	5	Total
/20	/20	/20	/20	/20	/100

DO NOT BEGIN THE EXAM UNTIL YOU ARE TOLD TO DO SO.

ID no.:_____

Name:

5/28/2007 11:00 to 12:20 pm Professor Peter Burke

PROBLEM ONE: (20 points)

In a certain application, the circuit in the figure below must be designed to meet these two criteria:

(a) $V_o / V_s = 0.05$ (b) $R_{eq} = 40 \text{ k}\Omega$

If the load resistor 5 k Ω is fixed, find R_1 and R_2 to meet the criteria.

Name:_____

5/28/2007 11:00 to 12:20 pm Professor Peter Burke ID no.:_____

PROBLEM TWO:

A load is connected to a network. At the terminals to which the load is connected, $R_{Th} = 10 \Omega$ and $V_{Th} = 40 V$. Find the maximum possible power supplied to the load.

Name:______
ID no.:_____

5/28/2007 11:00 to 12:20 pm Professor Peter Burke

PROBLEM THREE:

The equivalent capacitance at terminals *a-b* in the circuit in the figure below is 20 μ F. Calculate the value of *C*.

Name:______
ID no.:_____

5/28/2007 11:00 to 12:20 pm Professor Peter Burke **PROBLEM FOUR:**

Determine R_{Th} and V_{Th} at terminals 1-2 of the circuits shown below.

Name:_____

5/28/2007 11:00 to 12:20 pm Professor Peter Burke

ID no.:_____

PROBLEM FIVE:

Obtain v_o for the op amp circuit shown below.

Spring, 2007

EECS70A / CSE 70A Network Analysis I Prof. Peter Burke

Midterm II solution

Grading criteria: for all questions, no credits for answers without units and -5pts for each wrong unit.

Problem 1:

Criteria: (a) $V_o / V_s = 0.05$ and (b) $R_{eq} = 40 \text{ k}\Omega$				
From the circuit, $R_{eq} = R_1 + R_2 \parallel 5 \text{ k}\Omega = 40 \text{ k}\Omega$				
Using voltage divider: $V_0 = V_s$. $(R_2 \parallel 5 \ k\Omega) / (R_1 + R_2 \parallel 5 \ k\Omega)$				
$V_o / V_s = (R_2 \parallel 5 \ k\Omega) / (R_1 + R_2 \parallel 5 \ k\Omega) = 0.0.$				
$(\mathbf{R}_2 \parallel 5 \mathbf{k}\Omega) = 0.05 \mathbf{x} \ 40 \mathbf{k}\Omega = 2 \mathbf{k}\Omega$				
$(\mathbf{R}_2 \ge 5 \mathbf{k}\Omega) / (\mathbf{R}_2 + 5 \mathbf{k}\Omega) = 2 \mathbf{k}\Omega$				
$R_2 = 0.4 R_2 + 2 k\Omega$				
$\therefore R_2 = 3.3 \text{ k}\Omega$				
$\therefore \mathbf{R}_1 = 40 \ \mathrm{k}\Omega - \mathbf{R}_2 \parallel 5 \ \mathrm{k}\Omega = 38 \ \mathrm{k}\Omega$				
Grading criteria: -5pts for every incorrect equation				
-2pts for each wrong substitution				
-2pts for wrong final answers				

Problem 2:

To have maximum possible power supplied to the load, $R_{Th} = R_L = 10\Omega$ Wmax = $V_{Th}^2 / 4R_{Th} = (40)^2 / (4 \times 10) = 40$ W

Grading criteria: -5pts for incorrect equation -5pts for wrong R_L -5pts for wrong substitutions -2pts for wrong final answer

Problem 3:

10 F + 1 / (1/C + 1/20 F) = 20 F 1/C + 1/20 F = 1/ 10 μ F

Spring, 2007

EECS70A / CSE 70A Network Analysis I Prof. Peter Burke

Midterm II solution

Grading criteria: for all questions, no credits for answers without units and -5pts for each wrong unit.

Problem 1:

Criteria: (a) $V_o / V_s = 0.05$ and (b) $R_{eq} = 40 \text{ k}\Omega$				
From the circuit, $R_{eq} = R_1 + R_2 \parallel 5 \text{ k}\Omega = 40 \text{ k}\Omega$				
Using voltage divider: $V_0 = V_s$. $(R_2 \parallel 5 \ k\Omega) / (R_1 + R_2 \parallel 5 \ k\Omega)$				
$V_o / V_s = (R_2 \parallel 5 \ k\Omega) / (R_1 + R_2 \parallel 5 \ k\Omega) = 0.0.$				
$(\mathbf{R}_2 \parallel 5 \mathbf{k}\Omega) = 0.05 \mathbf{x} \ 40 \mathbf{k}\Omega = 2 \mathbf{k}\Omega$				
$(\mathbf{R}_2 \ge 5 \mathbf{k}\Omega) / (\mathbf{R}_2 + 5 \mathbf{k}\Omega) = 2 \mathbf{k}\Omega$				
$R_2 = 0.4 R_2 + 2 k\Omega$				
$\therefore R_2 = 3.3 \text{ k}\Omega$				
$\therefore \mathbf{R}_1 = 40 \ \mathrm{k}\Omega - \mathbf{R}_2 \parallel 5 \ \mathrm{k}\Omega = 38 \ \mathrm{k}\Omega$				
Grading criteria: -5pts for every incorrect equation				
-2pts for each wrong substitution				
-2pts for wrong final answers				

Problem 2:

To have maximum possible power supplied to the load, $R_{Th} = R_L = 10\Omega$ Wmax = $V_{Th}^2 / 4R_{Th} = (40)^2 / (4 \times 10) = 40$ W

Grading criteria: -5pts for incorrect equation -5pts for wrong R_L -5pts for wrong substitutions -2pts for wrong final answer

Problem 3:

10 F + 1 / (1/C + 1/20 F) = 20 F 1/C + 1/20 F = 1/ 10 μ F