\qquad
\qquad
Professor Peter Burke

1	2	3	4	5	Total	
$/ 20$		$/ 20$		$/ 20$		$/ 20$

DO NOT BEGIN THE EXAM UNTIL YOU ARE TOLD TO DO SO.

\qquad

PROBLEM ONE: (20 points)

In a certain application, the circuit in the figure below must be designed to meet these two criteria:
(a) $V_{o} / V_{s}=0.05$
(b) $R_{\text {eq }}=40 \mathrm{k} \Omega$

If the load resistor $5 \mathrm{k} \Omega$ is fixed, find R_{1} and R_{2} to meet the criteria.

PROBLEM TWO:

A load is connected to a network. At the terminals to which the load is connected, $\mathrm{R}_{\mathrm{Th}}=10 \Omega$ and $\mathrm{V}_{\mathrm{Th}}=40 \mathrm{~V}$. Find the maximum possible power supplied to the load.

EECS170A Spring 2007 Midterm Exam \#2
5/28/2007 11:00 to $12: 20 \mathrm{pm}$
Professor Peter Burke

PROBLEM THREE:

The equivalent capacitance at terminals $a-b$ in the circuit in the figure below is $20 \mu \mathrm{~F}$. Calculate the value of C.

EECS170A Spring 2007 Midterm Exam \#2
5/28/2007 11:00 to $12: 20 \mathrm{pm}$
Professor Peter Burke

PROBLEM FOUR:

Determine $\boldsymbol{R}_{\mathrm{Th}}$ and $\boldsymbol{V}_{\mathrm{Th}}$ at terminals 1-2 of the circuits shown below.

EECS170A Spring 2007 Midterm Exam \#2
5/28/2007 11:00 to 12:20 pm
Professor Peter Burke

PROBLEM FIVE:

Obtain v_{o} for the op amp circuit shown below.

EECS70A / CSE 70A Network Analysis I Prof. Peter Burke

Midterm II solution

Grading criteria: for all questions, no credits for answers without units and $-5 p t s$ for each wrong unit.

Problem 1:

Criteria: (a) $V_{\mathrm{o}} / V_{\mathrm{s}}=0.05$ and (b) $\mathrm{R}_{\mathrm{eq}}=40 \mathrm{k} \Omega$
From the circuit, $\mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{1}+\mathrm{R}_{2} \| 5 \mathrm{k} \Omega=40 \mathrm{k} \Omega$
Using voltage divider: $\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{s}} .\left(\mathrm{R}_{2} \| 5 \mathrm{k} \Omega\right) /\left(\mathrm{R}_{1}+\mathrm{R}_{2} \| 5 \mathrm{k} \Omega\right)$
$\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{s}}=\left(\mathrm{R}_{2} \| 5 \mathrm{k} \Omega\right) /\left(\mathrm{R}_{1}+\mathrm{R}_{2} \| 5 \mathrm{k} \Omega\right)=0.05$
$\left(\mathrm{R}_{2} \| 5 \mathrm{k} \Omega\right)=0.05 \times 40 \mathrm{k} \Omega=2 \mathrm{k} \Omega$
$\left(\mathrm{R}_{2} \times 5 \mathrm{k} \Omega\right) /\left(\mathrm{R}_{2}+5 \mathrm{k} \Omega\right)=2 \mathrm{k} \Omega$
$\mathrm{R}_{2}=0.4 \mathrm{R}_{2}+2 \mathrm{k} \Omega$
$\therefore \mathrm{R}_{2}=3.3 \mathrm{k} \Omega$
$\therefore \mathrm{R}_{1}=40 \mathrm{k} \Omega-\mathrm{R}_{2} \| I 5 \mathrm{k} \Omega=38 \mathrm{k} \Omega$
Grading criteria: -5 pts for every incorrect equation
$-2 p t s$ for each wrong substitution
-2 pts for wrong final answers
Problem 2:

To have maximum possible power supplied to the load, $\mathrm{R}_{\mathrm{Th}}=\mathrm{R}_{\mathrm{L}}=10 \Omega$
$\mathrm{Wmax}=\mathrm{V}_{\mathrm{Th}}{ }^{2} / 4 \mathrm{R}_{\mathrm{Th}}=(40)^{2} /(4 \times 10)=40 \mathrm{~W}$

Grading criteria: $\quad-5 p t s$ for incorrect equation
$-5 p t s$ for wrong R_{L}
-5 pts for wrong substitutions
$-2 p t s$ for wrong final answer

Problem 3:
$10 \mu \mathrm{~F}+1 /(1 / \mathrm{C}+1 / 20 \mu \mathrm{~F})=20 \mu \mathrm{~F}$
$1 / \mathrm{C}+1 / 20 \mu \mathrm{~F}=1 / 10 \mathrm{uF}$

EECS70A / CSE 70A Network Analysis I Prof. Peter Burke

Midterm II solution

Grading criteria: for all questions, no credits for answers without units and $-5 p t s$ for each wrong unit.

Problem 1:

Criteria: (a) $V_{\mathrm{o}} / V_{\mathrm{s}}=0.05$ and (b) $\mathrm{R}_{\mathrm{eq}}=40 \mathrm{k} \Omega$
From the circuit, $\mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{1}+\mathrm{R}_{2} \| 5 \mathrm{k} \Omega=40 \mathrm{k} \Omega$
Using voltage divider: $\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{s}} .\left(\mathrm{R}_{2} \| 5 \mathrm{k} \Omega\right) /\left(\mathrm{R}_{1}+\mathrm{R}_{2} \| 5 \mathrm{k} \Omega\right)$
$\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{s}}=\left(\mathrm{R}_{2} \| 5 \mathrm{k} \Omega\right) /\left(\mathrm{R}_{1}+\mathrm{R}_{2} \| 5 \mathrm{k} \Omega\right)=0.05$
$\left(\mathrm{R}_{2} \| 5 \mathrm{k} \Omega\right)=0.05 \times 40 \mathrm{k} \Omega=2 \mathrm{k} \Omega$
$\left(\mathrm{R}_{2} \times 5 \mathrm{k} \Omega\right) /\left(\mathrm{R}_{2}+5 \mathrm{k} \Omega\right)=2 \mathrm{k} \Omega$
$\mathrm{R}_{2}=0.4 \mathrm{R}_{2}+2 \mathrm{k} \Omega$
$\therefore \mathrm{R}_{2}=3.3 \mathrm{k} \Omega$
$\therefore \mathrm{R}_{1}=40 \mathrm{k} \Omega-\mathrm{R}_{2} \| I 5 \mathrm{k} \Omega=38 \mathrm{k} \Omega$
Grading criteria: -5 pts for every incorrect equation
$-2 p t s$ for each wrong substitution
-2 pts for wrong final answers
Problem 2:

To have maximum possible power supplied to the load, $\mathrm{R}_{\mathrm{Th}}=\mathrm{R}_{\mathrm{L}}=10 \Omega$
$\mathrm{Wmax}=\mathrm{V}_{\mathrm{Th}}{ }^{2} / 4 \mathrm{R}_{\mathrm{Th}}=(40)^{2} /(4 \times 10)=40 \mathrm{~W}$

Grading criteria: $\quad-5 p t s$ for incorrect equation
$-5 p t s$ for wrong R_{L}
-5 pts for wrong substitutions
$-2 p t s$ for wrong final answer

Problem 3:
$10 \mu \mathrm{~F}+1 /(1 / \mathrm{C}+1 / 20 \mu \mathrm{~F})=20 \mu \mathrm{~F}$
$1 / \mathrm{C}+1 / 20 \mu \mathrm{~F}=1 / 10 \mathrm{uF}$

