EECS70A Spring 2008 Midterm Exam #1 4/22/2008 11:00 to 12:20 pm Professor Peter Burke

Name:_			
ID no.:_			_

1		2	3	4	5	5	Total
	/10	/10	/20	/20	/20	/20	/100

DO NOT BEGIN THE EXAM UNTIL YOU ARE TOLD TO DO SO.

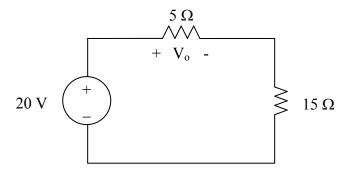
EECS70A Spring 2008 Midterm Exam #1	Name:
4/22/2008 11:00 to 12:20 pm	ID no.:
Professor Peter Rurke	

PROBLEM ONE: (10 points)

A battery may be rated in ampere-hours (Ah). A lead-acid battery is rated at 100 Ah.

a) What is the miximum current it can supply for 50 h?

b) How many days will it last if it is discharged at 1 mA?

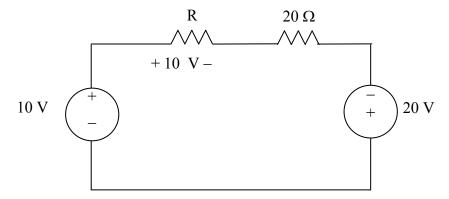

EECS70A Spring 2008	Midterm Exam #1
---------------------	-----------------

4/22/2008 11:00 to 12:20 pm Professor Peter Burke

Name:			
ID no ·			

PROBLEM TWO(10 points):

Calculate V_o in the circuit below.

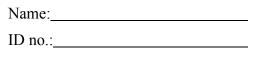


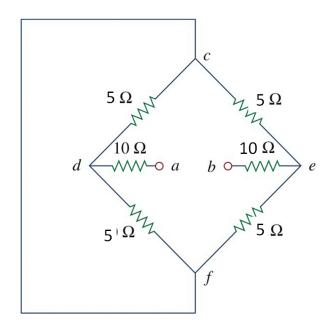
EECS70A	Spring	2008	Midterm	Exam #1
---------	--------	------	---------	---------

Name:_____ ID no.:____

4/22/2008 11:00 to 12:20 pm

Professor Peter Burke PROBLEM THREE(20 points): Find R for the circuit below.

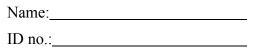


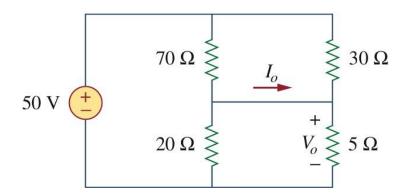

EECS70A Spring 2008	Midterm	Exam #1
---------------------	---------	---------

4/22/2008 11:00 to 12:20 pm

Professor Peter Burke

PROBLEM FOUR(20 points): Find the equivalent resistance R_{ab} in the circuit below.

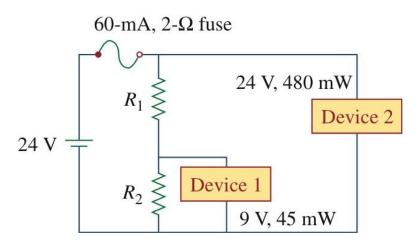



EECS70A Spring 2008	3 Midterm Exam #1
---------------------	-------------------

4/22/2008 11:00 to 12:20 pm

Professor Peter Burke

PROBLEM FIVE (20 points): Calculate V_0 and I_0 in the circuit below.


EECS70A	Spring 2008	Midterm	Exam	#1
4/22/2008	11:00 to 12:	20 pm		

Name:_____

Professor Peter Burke

PROBLEM SIX(20 points):

Two delicate devices are rated as shown in the figure below. Find the values of the resistors R_1 and R_2 needed to power the devices using a 24-V battery.

EECS70A / CSE 70A Network Analysis I Prof. Peter Burke

Midterm I solution

Grading criteria for all questions: no credits for answers without units and - 5pts for each wrong unit.

Problem 1:

(a)
$$i = \frac{100A \cdot h}{50} = 2A$$

(b)
$$t = \frac{100Ah}{0.001A} = \frac{100,000h}{24h/day} = \frac{4,167 days}{24h/day}$$

Grading criteria: 3pts for each correct charge and time equation
4pts for each wrong unit conversion with correct steps

Problem 2:

Using voltage division,

$$V_0 = \frac{5\Omega}{(15+5)\Omega}(20V) = 5V$$

Alternatively,

$$I_0 = \frac{20V}{20\Omega} = 1A$$
 $V_0 = 1A \cdot 5\Omega = 5V$

Grading criteria: 2pts for only Ohm's Law

5pts for correct voltage division equation or equation for current I_0 7.5pts for correct answer with wrong sign

Problem 3:

Applying KVL,

$$-10 + 10 + 20I - 20 = 0$$
, $I = 1A$

$$R = \frac{V}{I} = \frac{10}{1} = 10\Omega$$

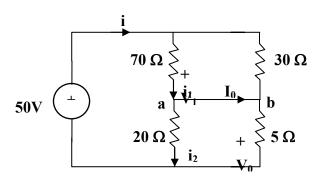
Grading criteria: 2pts for only Ohm's law

5pts for only correct KVL with wrong current I 10pts for KVL equation with correct current I 15pts for correct current I with wrong resistance R

Problem 4:

$$5||5 = 2.5\Omega$$
 $5||5 = 2.5\Omega$

$$R_{ab} = 10 + 2.5 + 2.5 + 10 = 25 \Omega$$


$$2.5 \Omega \begin{cases} 10 \Omega & 10 \Omega \\ 10 \Omega & 5 \end{cases}$$

Grading criteria: 3pts for any correct parallel and series calculations or Delta,Y conversion 5pts for only showing both $5\Omega//5\Omega$ configurations

7pts for only showing correct rearrangement of resistances

10pts for wrong final answer with correct steps

Problem 5:

Combining the versions in parallel,

$$70||30 = \frac{70 \times 30}{100} = 21\Omega$$
, $20||5 = \frac{20 \times 5}{25} = 4\Omega$

$$i = \frac{50}{21+4} = 2 A$$

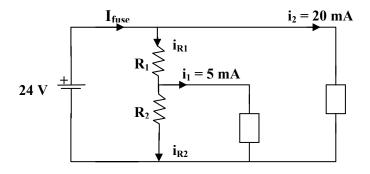
$$v_i = 21i = 42 \text{ V}, v_0 = 4i = 8 \text{ V}$$

$$i_1 = \frac{v_1}{70} = 0.6 \text{ A}, i_2 = \frac{v_2}{20} = 0.4 \text{ A}$$

At node a, KCL must be satisfied

$$i_1 = i_2 + I_0$$
 $0.6 = 0.4 + I_0$ $I_0 = 0.2 \text{ A}$

Hence $v_0 = 8 V$ and $I_0 = 0.2A$


Grading criteria: 5pts for only correct KCL, KVL equation or correct simplification 7pts for wrong I_0 with correct i_1 and i_2 using correct KCL equation 7pts for wrong V_0 with correct KVL equation 10pts for only correct V_0 with correct simplification steps

Problem 6:

The voltage across the fuse should be negligible when compared with 24 V.

$$I_1 = \frac{p_1}{V_1} = \frac{45 \text{mW}}{9 \text{V}} = 5 \text{mA}$$

$$I_2 = \frac{p_2}{V_2} = \frac{480mW}{24} = 20mA$$

Let R₃ represent the resistance of the first device.

$$R_3 = 9/0.005 = 1,800 \Omega$$

The fuse condition (60 mA, 2 Ω) is not a fixed condition, but is the maximum condition. The voltage across R_3 must equal 9 volts. Since the circuit is powered by a battery we could choose the value of R_2 which draws the least current, $\underline{\mathbf{R}_2} = \underline{\infty}$. Thus we can calculate the value of R_1 that give 9 volts across R_3 .

9 =
$$(1800/(R_1 + 1800))24$$
 or $R_1 = (24/9)1800 - 1800 = 3,000\Omega$

This value of R_1 means that we only have a total of 25 mA flowing out of the battery through the fuse.

Grading criteria: 5pts for only correct power equation

7pts for each answer of R_1 =375 Ω , R_2 =257 Ω with correct i_1 10pts for correct i_1 (device 1) with correct power equation 12pts for correct i_1 and correct i_{R1} =40mA and i_{R2} =35mA 15pts for correct i_1 and one correct R_1 =3 K Ω or R_2 = $\infty\Omega$