EECS70A Spring 2008 Midterm Exam \#1
4/22/2008 11:00 to 12:20 pm
Professor Peter Burke

| 1 | 2 | 3 | 4 | 5 | 5 | Total |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | $/ 10$ |  | 10 |  | $/ 20$ |  |

## DO NOT BEGIN THE EXAM UNTIL YOU ARE TOLD TO DO SO.

EECS70A Spring 2008 Midterm Exam \#1
4/22/2008 11:00 to 12:20 pm
Professor Peter Burke
PROBLEM ONE: (10 points)
A battery may be rated in ampere-hours (Ah). A lead-acid battery is rated at 100 Ah .
a) What is the miximum current it can supply for 50 h ?
b) How many days will it last if it is discharged at 1 mA ?

EECS70A Spring 2008 Midterm Exam \#1
4/22/2008 11:00 to $12: 20 \mathrm{pm}$
Professor Peter Burke PROBLEM TWO(10 points):

Calculate $\mathrm{V}_{\mathrm{o}}$ in the circuit below.


EECS70A Spring 2008 Midterm Exam \#1
4/22/2008 11:00 to $12: 20 \mathrm{pm}$
Professor Peter Burke
PROBLEM THREE(20 points):
Find R for the circuit below.


EECS70A Spring 2008 Midterm Exam \#1
4/22/2008 11:00 to 12:20 pm
Professor Peter Burke
PROBLEM FOUR(20 points):
Find the equivalent resistance $R_{a b}$ in the circuit below.


EECS70A Spring 2008 Midterm Exam \#1
4/22/2008 11:00 to 12:20 pm
Professor Peter Burke PROBLEM FIVE (20 points):
Calculate $V_{o}$ and $I_{o}$ in the circuit below.


EECS70A Spring 2008 Midterm Exam \#1
4/22/2008 11:00 to $12: 20 \mathrm{pm}$
Professor Peter Burke

## PROBLEM SIX(20 points):

Two delicate devices are rated as shown in the figure below. Find the values of the resistors $R_{1}$ and $R_{2}$ needed to power the devices using a $24-\mathrm{V}$ battery.


# EECS70A / CSE 70A Network Analysis I <br> Prof. Peter Burke 

Midterm I solution

Grading criteria for all questions: no credits for answers without units and - 5pts for each wrong unit.

Problem 1:
(a) $i=\frac{100 \mathrm{~A} \cdot \mathrm{~h}}{50}=\underline{2 \mathrm{~A}}$
(b) $t=\frac{100 \mathrm{Ah}}{0.001 \mathrm{~A}}=\frac{100,000 \mathrm{~h}}{24 \mathrm{~h} / \text { day }}=\underline{4,167 \text { days }}$

Grading criteria: 3pts for each correct charge and time equation 4 pts for each wrong unit conversion with correct steps

Problem 2:

Using voltage division,

$$
V_{0}=\frac{5 \Omega}{(15+5) \Omega}(20 \mathrm{~V})=5 \mathrm{~V}
$$

Alternatively,
$I_{0}=\frac{20 \mathrm{~V}}{20 \Omega}=1 \mathrm{~A} \quad V_{0}=1 \mathrm{~A} \cdot 5 \Omega=5 \mathrm{~V}$
Grading criteria: 2 pts for only Ohm's Law
5 pts for correct voltage division equation or equation for current $\mathrm{I}_{0}$ 7.5pts for correct answer with wrong sign

Problem 3:

Applying KVL,

$$
-10+10+20 \mathrm{I}-20=0, \quad \mathrm{I}=1 \mathrm{~A}
$$

$R=\frac{V}{I}=\frac{10}{1}=10 \Omega$
Grading criteria: 2 pts for only Ohm's law
5 pts for only correct KVL with wrong current I
10pts for KVL equation with correct current I
15 pts for correct current I with wrong resistance R

Problem 4:
$5\|5=2.5 \Omega \quad 5\| 5=2.5 \Omega$

$$
\mathrm{R}_{\mathrm{ab}}=10+2.5+2.5+10=\underline{\mathbf{2 5} \Omega}
$$



Grading criteria: 3pts for any correct parallel and series calculations or Delta, Y conversion
5 pts for only showing both $5 \Omega / / 5 \Omega$ configurations
7 pts for only showing correct rearrangement of resistances
10 pts for wrong final answer with correct steps
Problem 5:


Combining the versions in parallel,

$$
\begin{aligned}
& 70\left\|30=\frac{70 \times 30}{100}=21 \Omega, 20\right\| 5=\frac{20 \times 5}{25}=4 \Omega \\
& i=\frac{50}{21+4}=2 \mathrm{~A} \\
& \mathrm{v}_{\mathrm{i}}=21 \mathrm{i}=42 \mathrm{~V}, \mathrm{v}_{0}=4 \mathrm{i}=8 \mathrm{~V} \\
& \mathrm{i}_{1}=\frac{\mathrm{v}_{1}}{70}=0.6 \mathrm{~A}, \mathrm{i}_{2}=\frac{\mathrm{v}_{2}}{20}=0.4 \mathrm{~A}
\end{aligned}
$$

At node $\mathrm{a}, \mathrm{KCL}$ must be satisfied

$$
\mathrm{i}_{1}=\mathrm{i}_{2}+\mathrm{I}_{0} \quad 0.6=0.4+\mathrm{I}_{0} \quad \mathrm{I}_{0}=0.2 \mathrm{~A}
$$

Hence $\mathrm{v}_{0}=\underline{\mathbf{8 V}}$ and $\mathrm{I}_{0}=\underline{\mathbf{0 . 2 A}}$

Grading criteria: 5 pts for only correct KCL, KVL equation or correct simplification 7 pts for wrong $I_{0}$ with correct $i_{1}$ and $i_{2}$ using correct $K C L$ equation 7 pts for wrong $\mathrm{V}_{0}$ with correct KVL equation 10 pts for only correct $\mathrm{V}_{0}$ with correct simplification steps

Problem 6:

The voltage across the fuse should be negligible when compared with 24 V .

$$
\begin{aligned}
& \mathrm{I}_{1}=\frac{\mathrm{p}_{1}}{\mathrm{~V}_{1}}=\frac{45 \mathrm{~mW}}{9 \mathrm{~V}}=5 \mathrm{~mA} \\
& \mathrm{I}_{2}=\frac{\mathrm{p}_{2}}{\mathrm{~V}_{2}}=\frac{480 \mathrm{~mW}}{24}=20 \mathrm{~mA}
\end{aligned}
$$



Let $\mathrm{R}_{3}$ represent the resistance of the first device.

$$
\mathrm{R}_{3}=9 / 0.005=1,800 \Omega
$$

The fuse condition ( $60 \mathrm{~mA}, 2 \Omega$ ) is not a fixed condition, but is the maximum condition. The voltage across $R_{3}$ must equal 9 volts. Since the circuit is powered by a battery we could choose the value of $\mathrm{R}_{2}$ which draws the least current, $\underline{\mathbf{R}}_{\underline{2}}=\underline{\infty}$. Thus we can calculate the value of $\mathrm{R}_{1}$ that give 9 volts across $\mathrm{R}_{3}$.

$$
9=\left(1800 /\left(\mathrm{R}_{1}+1800\right)\right) 24 \text { or } \mathrm{R}_{1}=(24 / 9) 1800-1800=\underline{\mathbf{3 , 0 0 0} \boldsymbol{\Omega}}
$$

This value of $\mathrm{R}_{1}$ means that we only have a total of 25 mA flowing out of the battery through the fuse.
Grading criteria: 5 pts for only correct power equation
7 pts for each answer of $\mathrm{R}_{1}=375 \Omega, \mathrm{R}_{2}=257 \Omega$ with correct $\mathrm{i}_{1}$
10 pts for correct $i_{1}$ (device 1 ) with correct power equation
12 pts for correct $i_{1}$ and correct $i_{R 1}=40 \mathrm{~mA}$ and $i_{\text {R2 }}=35 \mathrm{~mA}$
15 pts for correct $i_{1}$ and one correct $R_{1}=3 \mathrm{~K} \Omega$ or $R_{2}=\infty \Omega$

