EECS70A Spring 2009 Final Exam
6/9/2009 10:30 to 12:30 pm
Professor Peter Burke

1	2	3	4	5	6	Total
	$/ 10$		10	$/ 20$	$/ 20$	

DO NOT BEGIN THE EXAM UNTIL YOU ARE TOLD TO DO SO.

EECS70A Spring 2009 Final Exam
6/9/2009 10:30 to 12:30 pm Professor Peter Burke

PROBLEM ONE: (10 points)

A) State and describe Thevenin's Theorem.
B) State and describe Norton's Theorem.

EECS70A Spring 2009 Final Exam
6/9/2009 10:30 to 12:30 pm Professor Peter Burke

PROBLEM TWO(10 points):

Describe the concepts of complete response and transient response of linear RLC circuits.

EECS70A Spring 2009 Final Exam
6/9/2009 10:30 to 12:30 pm Professor Peter Burke

PROBLEM THREE(20 points):

For the following circuit, the switch is closed at $t=0$. Find $v_{c}(t)$ and $i_{L}(t)$ for $t>0$.

EECS70A Spring 2009 Final Exam
6/9/2009 10:30 to 12:30 pm
Professor Peter Burke
PROBLEM FOUR (20 points):

Calculate the output impedance of the circuit shown in the figure below.
Hint: Insert a 1-A current source at the output and find the voltage at the output, then the ratio.

EECS70A Spring 2009 Final Exam
6/9/2009 10:30 to 12:30 pm
Professor Peter Burke
PROBLEM FIVE (20 points):
For the circuit in the figure below, determine the transfer funtion $\mathrm{H}(\omega)=\mathbf{V}_{o} / \mathbf{V}_{s}$.

EECS70A Spring 2009 Final Exam
6/9/2009 10:30 to 12:30 pm
Professor Peter Burke
PROBLEM SIX(20 points):

Using nodal analysis obtain \mathbf{V} in the circuit of the figure below.

Problem 1:

A) A linear two-terminal circuit can be replaced by an equivalent circuit consisting of a voltage source V_{Th} in series with a resistor R_{Th}, where V_{Th} is the open-circuit voltage at the terminals and R_{Th} is the input or equivalent resistance at the terminals when the independent sources are turned off.
B) A linear two-terminal circuit can be replaced by an equivalent circuit consisting of a current source I_{N} in parallel with a resistor R_{N}, where I_{N} is the sort-circuit current through the terminals and R_{N} is the input or equivalent resistance at the terminals when the terminals when the independent sources are turned off.

Grading criteria: 3 pts for equivalent circuit with a resistor and a source
5 pts for mentioning R_{Th} and V_{Th} in series
5 pts for mentioning R_{N} and I_{N} in parallel

Problem 2:

Complete response $=$ transient response + steady-state response
A complete response consists of a transient response (temporary response) and a steady-state response (permanent response). The transient response is the circuit's temporary response that will die out with time. And the steady-state response is the behavior of the circuit a long time after an external excitation is applied.

Grading criteria: 5 pts for mentioning transient and steady-state responses for the complete response 5 pts for temporary responses for the transient response

Problem 3:
$t<0$:

initial conditions:

$$
\begin{aligned}
& i_{L\left(0^{-}\right)}=0=i_{L\left(0^{+}\right)} \\
& V_{C}\left(0^{-}\right)=12^{V}=V_{C\left(0^{+}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \dot{l}_{L}(t)=i_{1}+\dot{l}_{2} \quad: \mathrm{KCL} \\
& \dot{l}_{L}=\frac{V_{C}}{2}+0.5 \frac{d V_{C}}{d t}(1)
\end{aligned}
$$

$$
\begin{equation*}
12^{v}=4 i_{L}+V_{L}+V_{C}=4 i_{L}+1 \cdot \frac{d i_{L}}{d t}+V_{C} \tag{2}
\end{equation*}
$$

(1) $\xrightarrow{\frac{d}{d t}}$

$$
\begin{aligned}
& 12^{V}=4 i_{L}+V_{L}+V_{C}=4 i_{L}+1 \cdot \frac{d i_{L}}{d t}+V_{c} \Rightarrow 12=4\left(\frac{V_{c}}{2}+0.5 \frac{d V_{c}}{d t}\right)+\left(\frac{1}{2} \frac{d V_{C}}{d t}+0.0 \frac{d V_{C}}{d t}\right)+V_{c} \\
& (1) \stackrel{\frac{d}{d t}}{\Rightarrow} \frac{d i_{L}}{d t}=\frac{1}{2} \frac{d V_{c}}{d t}+0.5 \frac{d^{2} V_{C}}{d t^{2}} \Rightarrow 12 \\
& \Rightarrow 12=V_{C}+2 V_{c}+2 \frac{d V_{c}}{d t}+\frac{1}{2} \frac{d V_{C}}{d t}+\frac{1}{2} \frac{d^{2} V_{c}}{d t^{2}} \Rightarrow \frac{d^{2} V_{c}}{d t^{2}}+5 \frac{d V_{c}}{d t}+6 V_{C}=12 \\
& \Rightarrow S^{2}+5 S+6=0 \rightarrow(S+2)(S+3)=0 \Rightarrow S=-2 \& S=-3 \rightarrow \text { OVerdamped }
\end{aligned}
$$

$$
\begin{aligned}
& -2 t \\
& B e^{-3 t}+V_{S S} \\
& V_{s s}=V_{c(t \rightarrow \infty)}=\frac{2}{4+2} \times 12=4^{V} \\
& V_{c(0)}=12=A+B \\
& \text { (1) } \xrightarrow{t=0} \quad l_{L(0)}=\frac{V_{c(0)}}{2}+\left.0.5 \frac{d V_{c}}{d t}\right|_{t=0} \Longrightarrow 0=\frac{12}{2}+\frac{1}{2}[-2 A-3 B] \Rightarrow 2 A+3 B=12 \\
& \left\{\begin{array} { l }
{ A + B = 1 2 } \\
{ 2 A + 3 B = 1 2 }
\end{array} \Rightarrow \left\{\begin{array}{l}
A=24 \\
B=-12
\end{array} \Rightarrow V_{C(t)}=24 e^{-2 t}-12 e^{-3 t}+4\right.\right. \\
& i_{L(t)}=\frac{1}{2} V_{C(t)}+\frac{1}{2} \frac{d V_{c}}{d t}=12 e^{-2 t}-6 e^{-3 t}+2+\frac{1}{2}\left[-48 e^{-2 t}+36 e^{-3 t}\right] \\
& \Rightarrow \quad e_{L(t)}=-12 e^{-2 t}+12 e^{-3 t}+2
\end{aligned}
$$

Grading criteria:
Initial conditions 4pts.
Writing correct KCL/KVL leading to correct second order equation and correct characteristic equation 6 pts (defining the Overdamped case 2 pts).

Finding Vc (t) 5pts.
Finding $i_{L}(t) 5$ pts.
Any attempt 3pts.

Problem 4:

Insert a 1-A current source at the output as shown below.
$-\mathrm{j} 2 \Omega \quad 10 \Omega$

$$
0.2 v_{\circ}+1=\frac{v_{1}}{j 40}
$$

But $v_{0}=-1(-j 2)=j 2$
$j 2 \times 0.2+1=\frac{V_{1}}{j 40} \longrightarrow V_{1}=-16+j 40$
$\mathrm{V}_{\text {in }}=\mathrm{V}_{1}-\mathrm{V}_{\mathrm{o}}+10=-6+\mathrm{j} 38=1 \mathrm{x} \mathrm{Z}_{\text {in }}$

$$
Z_{i n}=-6+i 38 \Omega .
$$

Grading criteria:
Adding 1A soure 2pts,
Finding Vo 4pts, KCL at the node (or KVL at loop) 5pts,
Finding Vin 5pts,
Mentioning Zin $=$ Vin/1A and find Zin 4pts.
Writing everything up to end of nodal without solving it 15 pts ,
Any wrong attempt 3points

Problem 5:

Consider the circuit in the frequency domain as shown below.
Let $\quad \mathbf{Z}=\left(R_{2}+j \omega L\right) \| \frac{1}{j \omega C}$

$$
Z=\frac{\frac{1}{j \omega C}\left(R_{2}+j \omega L\right)}{R_{2}+j \omega L+\frac{1}{j \omega C}}=\frac{R_{2}+j \omega L}{1+j \omega R_{2}-\omega^{2} L C}
$$

$$
\frac{\mathbf{V}_{o}}{\mathbf{V}_{s}}=\frac{\mathbf{Z}}{\mathbf{Z}+R_{1}}=\frac{\frac{R_{2}+j \omega L}{1-\omega^{2} L C+j \omega R_{2} C}}{R_{1}+\frac{R_{2}+j \omega L}{1-\omega^{2} L C+j \omega R_{2} C}}
$$

$$
\frac{\mathbf{V}_{\mathrm{o}}}{\mathbf{V}_{\mathrm{s}}}=\frac{\mathbf{R}_{2}+j \omega L}{\mathbf{R}_{1}+\mathbf{R}_{2}-\omega^{2} \mathbf{L C R}+j \omega\left(L+R_{1} R_{2} \mathbf{C}\right)}
$$

Grading criteria:
Finding Z or writing related nodal 10 pts .
Writing correct voltage divider or solving the nodal correctly and find $\mathrm{H}(\mathrm{w}) 10 \mathrm{pts}$.
Any attempt 5 pts.

Problem 6:

$$
\begin{aligned}
& \frac{V-V_{S}}{R}+\frac{V}{j \omega L+\frac{1}{j \omega C}}+j \omega C V=0 \\
& V+\frac{j \omega R C V}{-\omega^{2} L C+1}+j \omega R C V=V_{S} \\
& \left(\frac{1-\omega^{2} L C+j \omega R C+j \omega R C-j \omega^{3} R L C^{2}}{1-\omega^{2} L C}\right) V=V_{S} \\
& V=\frac{\left(1-\omega^{2} L C\right) V_{S}}{\frac{1-\omega^{2} L C+j \omega R C\left(2-\omega^{2} L C\right)}{}}
\end{aligned}
$$

Grading criteria:
Writing correct nodal 10 pts.
Arranging the nodal in regards to V and Vs 5pts.
Solving the equations and find V correctly 5pts.
Any attempt 5pts.

